1,419 research outputs found
The nucleotide sequence of a human immnnoglobulin C-gamma-1 gene
We report the nucleotide sequence of a gene encoding the constant region of a human immnnoglobulin γ1 heavy chain (Cγ1). A comparison of this sequence with those of the Cγ2 and Cγ4 genes reveals that these three human Cγ genes share considerable homology in both coding and noncoding regions. The nucleotide sequence differences indicate that these genes diverged from one another approximately 6–8 million years ago. An examination of hinge exons shows that these coding regions have evolved more rapidly than any other areas of the Cγ genes in terms of both base substitution and deletion–insertion events. Coding sequence diversity also is observed in areas of CH domains which border the hinge
Strongly residual coordinates over A[x]
For a domain A of characteristic zero, a polynomial f over A[x] is called a
strongly residual coordinate if f becomes a coordinate (over A) upon going
modulo x, and f becomes a coordinate upon inverting x. We study the question of
when a strongly residual coordinate is a coordinate, a question closely related
to the Dolgachev-Weisfeiler conjecture. It is known that all strongly residual
coordinates are coordinates for n=2 . We show that a large class of strongly
residual coordinates that are generated by elementaries upon inverting x are in
fact coordinates for arbitrary n, with a stronger result in the n=3 case. As an
application, we show that all Venereau-type polynomials are 1-stable
coordinates.Comment: 15 pages. Some minor clarifications and notational improvements from
the first versio
Functional Amyloid Formation within Mammalian Tissue
Amyloid is a generally insoluble, fibrous cross-β sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin—a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin) may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology
EXTRACTION OF ROAD MARKINGS FROM MLS DATA: A REVIEW
Nowadays, Mobile Laser Scanning (MLS) systems are more and more used to realize extended topographic surveys of roads. Most of them provide for each measured point an attribute corresponding to a return signal strength, so called intensity value. This value enables to easily understand uncolored MLS as it helps to differentiate materials based on their albedo. In a road context, this intensity information allows to distinguish, among others, the main subject of this paper, i.e. road markings. However, this task is challenging. Road marking detection from dense MLS point cloud is widely studied by the research community. It might concern road management and diagnosis, intelligent traffic systems, high-definition maps, location and navigation services. Dense MLS point clouds provided by surveyors are not processed online, they are thus not directly applicable to autonomous driving, but those dense and precise data can be for instance used for the generation of HD reference maps. This paper presents a review of the different processing chains published in the literature. It underlines their contributions and highlights their potential limitations. Finally, a discussion and some suggestions of improvement are given
Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons
Retinal dopaminergic amacrine neurons (DA neurons) play a central role in reconfiguring retinal function according to prevailing illumination conditions, yet the mechanisms by which light regulates their activity are poorly understood. We investigated the means by which sustained light responses are evoked in DA neurons. Sustained light responses were driven by cationic currents and persisted in vitro and in vivo in the presence of L-AP4, a blocker of retinal ON-bipolar cells. Several characteristics of these L-AP4-resistant light responses suggested that they were driven by melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs), including long latencies, marked poststimulus persistence, and a peak spectral sensitivity of 478 nm. Furthermore, sustained DA neuron light responses, but not transient DA neuron responses, persisted in rod/cone degenerate retinas, in which ipRGCs account for virtually all remaining retinal phototransduction. Thus, ganglion-cell photoreceptors provide excitatory drive to DA neurons, most likely by way of the coramification of their dendrites and the processes of DA neurons in the inner plexiform layer. This unprecedented centrifugal outflow of ganglion-cell signals within the retina provides a novel basis for the restructuring of retinal circuits by light
Collapse-and-revival dynamics of strongly laser-driven electrons
The relativistic quantum dynamics of an electron in an intense single-mode
quantized electromagnetic field is investigated with special emphasis on the
spin degree of freedom. In addition to fast spin oscillations at the laser
frequency, a second time scale is identified due to the intensity dependent
emissions and absorptions of field quanta. In analogy to the well-known
phenomenon in atoms at moderate laser intensity, we put forward the conditions
of collapses and revivals for the spin evolution in laser-driven electrons
starting at feasible W/cm.Comment: 18 pages, 4 figure
Enhanced inverse bremsstrahlung heating rates in a strong laser field
Test particle studies of electron scattering on ions, in an oscillatory
electromagnetic field have shown that standard theoretical assumptions of small
angle collisions and phase independent orbits are incorrect for electron
trajectories with drift velocities smaller than quiver velocity amplitude. This
leads to significant enhancement of the electron energy gain and the inverse
bremsstrahlung heating rate in strong laser fields. Nonlinear processes such as
Coulomb focusing and correlated collisions of electrons being brought back to
the same ion by the oscillatory field are responsible for large angle, head-on
scattering processes. The statistical importance of these trajectories has been
examined for mono-energetic beam-like, Maxwellian and highly anisotropic
electron distribution functions. A new scaling of the inverse bremsstrahlung
heating rate with drift velocity and laser intensity is discussed.Comment: 12 pages, 12 figure
Stem cells as a therapeutic tool for the blind: biology and future prospects
Retinal degeneration due to genetic, diabetic and age-related disease is the most common cause of blindness in the developed world. Blindness occurs through the loss of the light-sensing photoreceptors; to restore vision, it would be necessary to introduce alternative photosensitive components into the eye. The recent development of an electronic prosthesis placed beneath the severely diseased retina has shown that subretinal stimulation may restore some visual function in blind patients. This proves that residual retinal circuits can be reawakened after photoreceptor loss and defines a goal for stem-cell-based therapy to replace photoreceptors. Advances in reprogramming adult cells have shown how it may be possible to generate autologous stem cells for transplantation without the need for an embryo donor. The recent success in culturing a whole optic cup in vitro has shown how large numbers of photoreceptors might be generated from embryonic stem cells. Taken together, these threads of discovery provide the basis for optimism for the development of a stem-cell-based strategy for the treatment of retinal blindness
- …