252 research outputs found

    Stem cell transplantation for ischemic stroke

    Get PDF
    Background Stroke is a leading cause of morbidity and mortality worldwide, with very large healthcare and social costs, and a strong demand for alternative therapeutic approaches. Preclinical studies have shown that stem cells transplanted into the brain can lead to functional improvement. However, to date, evidence for the benefits of stem cell transplantation in people with ischemic stroke is lacking. This is the first update of the Cochrane review published in 2010. Objectives To assess the efficacy and safety of stem cell transplantation compared with control in people with ischemic stroke. Search methods We searched the Cochrane Stroke Group Trials Register (last searched August 2018), CENTRAL (last searched August 2018), MED-LINE (1966 to August 2018), Embase (1980 to August 2018), and BIOSIS (1926 to August 2018). We handsearched potentially relevant conference proceedings, screened reference lists, and searched ongoing trials and research registers (last searched August 2018). We also contacted individuals active in the field and stem cell manufacturers (last contacted August 2018). Selection criteria We included randomized controlled trials (RCTs) that recruited people with ischemic stroke, in any phase of the disease (acute, subacute or chronic), and an ischemic lesion confirmed by computerized tomography or magnetic resonance imaging scan. We included all types of stem cell transplantation, regardless of cell source (autograft, allograft, or xenograft; embryonic, fetal, or adult; from brain or other tissues), route of cell administration (systemic or local), and dosage. The primary outcome was efficacy (assessed as neurologic impairment or functional outcome) at longer term follow-up (minimum six months). Secondary outcomes included post-procedure safety outcomes (death, worsening of neurological deficit, infections, and neoplastic transformation). Data collection and analysis Two review authors independently applied the inclusion criteria, assessed trial quality and risk of bias, and extracted data. If needed, we contacted study authors for additional information. We performed random effects meta-analyses when two or more RCTs were available for any outcome. We assessed the certainty of the evidence by using the GRADE approach. Main results In this updated review, we included seven completed RCTs with 401 participants. All tested adult human non-neural stem cells; cells were transplanted during the acute, subacute, or chronic phase of ischemic stroke; administered intravenously, intra-arterially, intracerebrally, or into the lumbar subarachnoid space. Follow-up ranged from six months to seven years. Efficacy outcomes were measured with the National Institutes of Health Stroke Scale (NIHSS), modified Rankin Scale (mRS), or Barthel Index (BI). Safety outcomes included case fatality, and were measured at the end of the trial. Overall, stem cell transplantation was associated with a better clinical outcome when measured with the NIHSS (mean difference [MD]-1.49, 95% confidence interval [CI]-2.65 to-0.33; five studies, 319 participants; low-certainty evidence), but not with the mRS (MD-0.42, 95% CI-0.86 to 0.02; six studies, 371 participants; very low-certainty evidence), or the BI (MD 14.09, 95% CI-1.94 to 30.13; three studies, 170 participants; very low-certainty evidence). The studies in favor of stem cell transplantation had, on average, a higher risk of bias, and a sample size of 32 or fewer participants. No significant safety concerns associated with stem cell transplantation were raised with respect to death (risk ratio [RR] 0.66, 95% CI 0.39 to 1.14; six studies, participants; low-certainty evidence). We were not able to perform the sensitivity analysis according to the quality of studies, because all of them were at high risk of bias. Authors’ conclusions Overall, in participants with ischemic stroke, stem cell transplantation was associated with a reduced neurological impairment, but not with a better functional outcome. No obvious safety concerns were raised. However, these conclusions came mostly from small RCTs with high risk of bias, and the certainty of the evidence ranged from low to very low. More well-designed trials are needed

    Stroke care during the COVID-19 pandemic : experience from three large European countries

    Get PDF
    In order to cope with the exponentially increasing number of patients infected with SARS-CoV-2, European countries made enormous efforts to reorganize medical assistance and several diseases, including stroke, were particularly impacted. We report the experience of stroke neurologists from three European countries (Italy, France and Germany) that faced the pandemic at diverse time points and with different approaches, depending on their resources and healthcare system organization. Pre-hospital and in-hospital acute stroke pathways were reorganized to prioritize COVID-19 management and, in severely affected regions of Italy and France, stroke care was centralized to a limited number of centers, whereas the remaining stroke units were dedicated to patients with COVID-19. Access to acute stroke diagnostics and time-dependent therapies was limited or delayed because of reduced capacities of emergency services due to the burden of patients with COVID-19. A marked reduction in the number of patients presenting with transient ischaemic attack and stroke was noted in the emergency departments of all three countries. Although we only have preliminary data, these conditions may have affected stroke outcome. These indirect effects of the COVID-19 pandemic could negate the efforts of stroke neurologists over the last few years to improve outcome and reduce mortality of stroke patients. Although the SARS-CoV-2 infection rate is slowing down in Europe, the effects of ending lockdown in the next months are unpredictable. It is important for the European and world stroke community to share what has been learned so far to be plan strategies to ensure stroke care in the future and upcoming challenging times

    Juvenile moyamoya and craniosynostosis in a child with deletion 1p32p31: Expanding the clinical spectrum of 1p32p31 deletion syndrome and a review of the literature

    Get PDF
    Moyamoya angiopathy (MA) is a rare cerebrovascular disorder characterised by the progressive occlusion of the internal carotid artery. Its aetiology is uncertain, but a genetic background seems likely, given the high MA familial rate. To investigate the aetiology of craniosynostosis and juvenile moyamoya in a 14-year-old male patient, we performed an array-comparative genomic hybridisation revealing a de novo interstitial deletion of 8.5 Mb in chromosome region 1p32p31. The deletion involved 34 protein coding genes, including NF1A, whose haploinsufficiency is indicated as being mainly responsible for the 1p32-p31 chromosome deletion syndrome phenotype (OMIM 613735). Our patient also has a deleted FOXD3 of the FOX gene family of transcription factors, which plays an important role in neural crest cell growth and differentiation. As the murine FOXD3-/- model shows craniofacial anomalies and abnormal common carotid artery morphology, it can be hypothesised that FOXD3 is involved in the pathogenesis of the craniofacial and vascular defects observed in our patient. In support of our assumption, we found in the literature another patient with a syndromic form of MA who had a deletion involving another FOX gene (FOXC1). In addition to describing the clinical history of our patient, we have reviewed all of the available literature concerning other patients with a 1p32p31 deletion, including cases from the Decipher database, and we have also reviewed the genetic disorders associated with MA, which is a useful guide for the diagnosis of syndromic form of MA

    Identificação de parvovírus suíno em javalis a partir do sequenciamento parcial do gene VP-2

    Get PDF
    Este estudo descreve a detecção e a identificação de DNA de parvovírus suíno (PVS) em amostras de órgãos de dois javalis, por PCR e sequenciamento direcionado ao gene VP-2. Pools de órgãos (baço, rins, fígado, linfonodos e tonsila) de três javalis adultos e assintomáticos de Paraguaçu Paulista, SP, criados com propósitos comerciais, foram submetidos à detecção de PVS, resultando em duas amostras positivas após reações de nested-PCR direcionadas aos genes NS-1 e VP-2. Os fragmentos parciais de VP-2 foram sequenciados e comparados a sequências homólogas de cepas NADL-2 e Kresse, demonstrando identidade nucleotídica de 100%. Com relação a 29 cepas de PVS previamente isoladas no Brasil, o grau de identidade nucleotídica variou de 99 a 100% (uma a três substituições de nucleotídeos). Estes resultados demonstram, pela primeira vez, a detecção direta por PCR de parvovírus suíno em javalis, confirmada por análise de sequenciamento genétic

    Clinical studies in stem cells transplantation for stroke: a review

    Get PDF
    Stroke is a significant cause of long-term disability. Currently, once damage from a stroke is established little can be done to recover lost function. Cell transplantation emerged as possible alternative therapy, on the basis of animal studies showing that cells transplanted into the brain not only survive, but also lead to functional improvement in different neurodegenerative diseases. Stem cells have been tested in stroke patients as a possible treatment option. While initially stem cells seemed to work by a 'cell replacement' mechanism, it is emerging that cell therapy works mostly by providing trophic support to the injured tissue and brain, fostering both neurogenesis and angiogenesis. This review summarizes clinical studies on stem cell transplantation in stroke patients to evaluate the safety, feasibility of administration and tolerability of this experimental treatment. At present there is little evidence to assess the applicability of this treatment in stroke patients and well designed clinical trials are necessary to evaluate safety and toxicity as well as optimal cell type, route and time of delivery

    19q13.11 cryptic deletion : description of two new cases and indication for a role of WTIP haploinsufficiency in hypospadias

    Get PDF
    Developmental delay/intellectual disabilities, speech disturbance, pre- and postnatal growth retardation, microcephaly, signs of ectodermal dysplasia, and genital malformations in males (hypospadias) represent the phenotypic core of the recent emerging 19q13.11 deletion syndrome. Using array-CGH for genome-wide screening we detected an interstitial deletion of chromosome band 19q13.11 in two patients exhibiting the recognizable pattern of malformations as described in other instances of this submicroscopic genomic imbalance. The deletion detected in our patients has been compared with previously reported cases leading to the refinement of the minimal overlapping region (MOR) for this microdeletion syndrome to 324 kb. This region encompasses five genes: four zinc finger (ZNF) genes belonging to the KRAB-ZNF subfamily (ZNF302, ZNF181, ZNF599, and ZNF30) and LOC400685. On the basis of our male patient 1 and on further six male cases of the literature, we also highlighted that larger 19q13.11 deletions including the Wilms tumor interacting protein (WTIP) gene, proximal to the MOR, results in hypospadias making this gene a possible candidate for this genital abnormality due to its well-known interaction with WT1. Although the mechanism underlying the phenotypic effects of copy number alterations involving KRAB-ZNF genes at 19q13.11 has not clearly been established, we suggest their haploinsufficiency as the most likely candidate for the phenotypic core of the 19q13.11 deletion syndrome. In addition, we hypothesized WTIP gene haploinsufficiency as responsible for hypospadias

    Third Yearly Activity Report

    Get PDF
    The calculation work performed during the 3rd project year in WP2 as well as the R&D activities carried out in WP3, WP4 and WP5 are described in this report. In addition, the work dedicated to the project management (WP1) as well as to WP6 regarding the dissemination/communication activities and the education/training program (e.g. the follow-up of the mobility program between different organizations in the consortium, training on simulation tools and activities accomplished by PhD/post-doctoral students) is also reported
    corecore