192 research outputs found
Climate Effects and Feedback Structure Determining Weed Population Dynamics in a Long-Term Experiment
Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements
Mirror Energy Differences at Large Isospin Studied through Direct Two-Nucleon Knockout
The first spectroscopy of excited states in Ni52 (Tz=-2) and Co51 (Tz=-3/2) has been obtained using the highly selective two-neutron knockout reaction. Mirror energy differences between isobaric analogue states in these nuclei and their mirror partners are interpreted in terms of isospin nonconserving effects. A comparison between large-scale shell-model calculations and data provides the most compelling evidence to date that both electromagnetic and an additional isospin nonconserving interactions for J=2 couplings, of unknown origin, are required to obtain good agreement. � 2013 American Physical Society
Mirrored one-nucleon knockout reactions to the T-z = +/- 3/2 A=53 mirror nuclei
Background: The study of excited states in mirror nuclei allows us to extract information on charge-dependent (i.e., isospin-nonconserving) interactions in nuclei.
Purpose: To extend previous studies of mirror nuclei in the f72 region, investigating charge symmetry breaking of the strong nuclear force.
Methods: γ-ray spectroscopy has been performed for the mirror (Tz=±32) pair Ni53 and Mn53, produced via mirrored one-nucleon knockout reactions.
Results: Several new transitions have been identified in Ni53 from which a new level scheme has been constructed. Cross sections for knockout have been analyzed and compared with reaction model calculations where evidence is found for knockout from high-spin isomeric states. Mirror energy differences between isobaric analog states have been computed, compared to large scale shell-model calculations, and interpreted in terms of isospin-nonconserving effects. In addition, lifetimes for the long-lived Jπ=52−1 analog states in both Mn53 and Ni53 have been extracted through lineshape analysis, giving half-lives of t12=120(14) ps and t12=198(12) ps, respectively.
Conclusions: The inclusion of a set of isovector isospin-nonconserving matrix elements to the shell-model calculations gave the best agreement with the experimental data
Mirror Energy Differences at Large Isospin Studied through Direct Two-Nucleon Knockout
The first spectroscopy of excited states in 52Ni (Tz=2) and 51Co (Tz=-3/2)
has been obtained using the highly selective two-neutron knockout reaction.
Mirror energy differences between isobaric analogue states in these nuclei and
their mirror partners are interpreted in terms of isospin nonconserving
effects. A comparison between large scale shell-model calculations and data
provides the most compelling evidence to date that both electromagnetic and an
additional isospin nonconserving interactions for J=2 couplings, of unknown
origin, are required to obtain good agreement.Comment: Accepted for publication in Physical Review Letter
Nodal dynamics, not degree distributions, determine the structural controllability of complex networks
Structural controllability has been proposed as an analytical framework for
making predictions regarding the control of complex networks across myriad
disciplines in the physical and life sciences (Liu et al.,
Nature:473(7346):167-173, 2011). Although the integration of control theory and
network analysis is important, we argue that the application of the structural
controllability framework to most if not all real-world networks leads to the
conclusion that a single control input, applied to the power dominating set
(PDS), is all that is needed for structural controllability. This result is
consistent with the well-known fact that controllability and its dual
observability are generic properties of systems. We argue that more important
than issues of structural controllability are the questions of whether a system
is almost uncontrollable, whether it is almost unobservable, and whether it
possesses almost pole-zero cancellations.Comment: 1 Figures, 6 page
Single-particle structure at N=29 : The structure of Ar 47 and first spectroscopy of S 45
Comprehensive spectroscopy of the N=29 nucleus Ar47 is presented, based on two complementary direct reaction mechanisms: one-neutron pickup onto Ar46 projectiles and one-proton removal from the 1- ground state of K48. The results are compared with shell-model calculations that use the state-of-the-art SDPF-U and SDPF-MU effective interactions. Also, from the Be9(Cl46,S45+γ)X one-proton-removal reaction, we report the first γ-ray transitions observed from S45. By using comparisons with shell-model calculations, and from the observed intensities and energy sums, we propose a first tentative level scheme for S45
Mirror Energy Differences at Large Isospin Studied through Direct Two-Nucleon Knockout
The first spectroscopy of excited states in 52Ni (Tz=-2) and 51Co (Tz=-3/2) has been obtained using the highly selective two-neutron knockout reaction. Mirror energy differences between isobaric analogue states in these nuclei and their mirror partners are interpreted in terms of isospin nonconserving effects. A comparison between large-scale shell-model calculations and data provides the most compelling evidence to date that both electromagnetic and an additional isospin nonconserving interactions for J=2 couplings, of unknown origin, are required to obtain good agreement
Cyclic voles and shrews and non-cyclic mice in a marginal grassland within European temperate forest
Cyclic population dynamics of small mammals are not restricted to the boreal and arctic zones of Eurasia and North America, but long-term data series from lower latitudes are still less common. We demonstrated here the presence of periodic oscillations in small mammal populations in eastern Poland using 22-year (1986–2007) trapping data from marginal meadow and river valley grasslands located in the extensive temperate woodland of Białowieża Primeval Forest. The two most common species inhabiting meadows and river valleys, root vole Microtus oeconomus and common shrew Sorex araneus, exhibited synchronous periodic changes, characterised by a 3-year time lag as indicated by an autocorrelation function. Moreover, the cycles of these two species were synchronous within both habitats. Population dynamics of the striped field mouse Apodemus agrarius was not cyclic. However, this species regularly reached maximum density 1 year before the synchronized peak of root voles and common shrews, which may suggest the existence of interspecific competition. Dynamics of all three species was dominated by direct density-dependent process, whereas delayed density dependent feedback was significant only in the root vole and common shrew. Climatic factors acting in winter and spring (affecting mainly survival and initial reproduction rates) were more important than those acting in summer and autumn and affected significantly only the common shrew. High temperatures in winter and spring had positive effects on autumn-to-autumn changes in abundance of this species, whereas deep snow in combination with high rainfall in spring negatively affected population increase rates in common shrew
- …