22,641 research outputs found

    System analysis and integration studies for a 15-micron horizon radiance measurement experiment

    Get PDF
    Systems analysis and integration studies for 15-micron horizon radiance measurement experimen

    Statistical Properties of Many Particle Eigenfunctions

    Full text link
    Wavefunction correlations and density matrices for few or many particles are derived from the properties of semiclassical energy Green functions. Universal features of fixed energy (microcanonical) random wavefunction correlation functions appear which reflect the emergence of the canonical ensemble as the number of particles approaches infinity. This arises through a little known asymptotic limit of Bessel functions. Constraints due to symmetries, boundaries, and collisions between particles can be included.Comment: 13 pages, 4 figure

    PROGRESSUS REI BOTANICAe

    Get PDF
    n/

    STUDIES ON ABLATION OF OBJECTS TRAVERSING AN ATMOSPHERE

    Get PDF
    Ablation-type thermal protection of objects traversing an atmosphere - earth and mar

    Quantum entangling power of adiabatically connected hamiltonians

    Get PDF
    The space of quantum Hamiltonians has a natural partition in classes of operators that can be adiabatically deformed into each other. We consider parametric families of Hamiltonians acting on a bi-partite quantum state-space. When the different Hamiltonians in the family fall in the same adiabatic class one can manipulate entanglement by moving through energy eigenstates corresponding to different value of the control parameters. We introduce an associated notion of adiabatic entangling power. This novel measure is analyzed for general d×dd\times d quantum systems and specific two-qubits examples are studiedComment: 5 pages, LaTeX, 2 eps figures included. Several non minor changes made (thanks referee) Version to appear in the PR

    Multiple jet impingement heat transfer characteristic: Experimental investigation of in-line and staggered arrays with crossflow

    Get PDF
    Heat transfer characteristics were obtained for configurations designed to model the impingement cooled midchord region of air cooled gas turbine airfoils. The configurations tested were inline and staggered two-dimensional arrays of circular jets with ten spanwise rows of holes. The cooling air was constrained to exit in the chordwise direction along the channel formed by the jet orifice plate and the heat transfer surface. Tests were run for chordwise jet hole spacings of five, ten, and fifteen hole diameters; spanwise spacings of four, six, and eight diameters; and channel heights of one, two, three, and six diameters. Mean jet Reynolds numbers ranged from 5000 to 50,000. The thermal boundary condition at the heat transfer test surface was isothermal. Tests were run for sets of geometrically similar configurations of different sizes. Mean and chordwise resolved Nusselt numbers were determined utilizing a specially constructed test surface which was segmented in the chordwise direction

    ANTHROPOGENIC EFFECTS ON NEW HAMPSHIRE SURFACE WATER QUALITY: LONG TERM EVIDENCE FROM LAKE SEDIMENTS

    Get PDF

    ANTHROPOGENIC EFFECTS ON NEW HAMPSHIRE SURFACE WATER QUALITY: LONG TERM EVIDENCE FROM LAKE SEDIMENTS

    Get PDF

    Decimation and Harmonic Inversion of Periodic Orbit Signals

    Full text link
    We present and compare three generically applicable signal processing methods for periodic orbit quantization via harmonic inversion of semiclassical recurrence functions. In a first step of each method, a band-limited decimated periodic orbit signal is obtained by analytical frequency windowing of the periodic orbit sum. In a second step, the frequencies and amplitudes of the decimated signal are determined by either Decimated Linear Predictor, Decimated Pade Approximant, or Decimated Signal Diagonalization. These techniques, which would have been numerically unstable without the windowing, provide numerically more accurate semiclassical spectra than does the filter-diagonalization method.Comment: 22 pages, 3 figures, submitted to J. Phys.

    Atomic micromotion and geometric forces in a triaxial magnetic trap

    Get PDF
    Non-adiabatic motion of Bose-Einstein condensates of rubidium atoms arising from the dynamical nature of a time-orbiting-potential (TOP) trap was observed experimentally. The orbital micromotion of the condensate in velocity space at the frequency of the rotating bias field of the TOP was detected by a time-of-flight method. A dependence of the equilibrium position of the atoms on the sense of rotation of the bias field was observed. We have compared our experimental findings with numerical simulations. The nonadiabatic following of the atomic spin in the trap rotating magnetic field produces geometric forces acting on the trapped atoms.Comment: 4 pages, 4 figure
    • …
    corecore