27,641 research outputs found
Adaptive Quantum Measurements of a Continuously Varying Phase
We analyze the problem of quantum-limited estimation of a stochastically
varying phase of a continuous beam (rather than a pulse) of the electromagnetic
field. We consider both non-adaptive and adaptive measurements, and both dyne
detection (using a local oscillator) and interferometric detection. We take the
phase variation to be \dot\phi = \sqrt{\kappa}\xi(t), where \xi(t) is
\delta-correlated Gaussian noise. For a beam of power P, the important
dimensionless parameter is N=P/\hbar\omega\kappa, the number of photons per
coherence time. For the case of dyne detection, both continuous-wave (cw)
coherent beams and cw (broadband) squeezed beams are considered. For a coherent
beam a simple feedback scheme gives good results, with a phase variance \simeq
N^{-1/2}/2. This is \sqrt{2} times smaller than that achievable by nonadaptive
(heterodyne) detection. For a squeezed beam a more accurate feedback scheme
gives a variance scaling as N^{-2/3}, compared to N^{-1/2} for heterodyne
detection. For the case of interferometry only a coherent input into one port
is considered. The locally optimal feedback scheme is identified, and it is
shown to give a variance scaling as N^{-1/2}. It offers a significant
improvement over nonadaptive interferometry only for N of order unity.Comment: 11 pages, 6 figures, journal versio
Berry phase, topology, and diabolicity in quantum nano-magnets
A topological theory of the diabolical points (degeneracies) of quantum
magnets is presented. Diabolical points are characterized by their diabolicity
index, for which topological sum rules are derived. The paradox of the the
missing diabolical points for Fe8 molecular magnets is clarified. A new method
is also developed to provide a simple interpretation, in terms of destructive
interferences due to the Berry phase, of the complete set of diabolical points
found in biaxial systems such as Fe8.Comment: 4 pages, 3 figure
PART-FARM GENERAL CROPLAND RETIREMENT: EFFECTS OF SOME ALTERNATIVE PROGRAM SPECIFICATIONS
Land Economics/Use,
Correlation of AH-1G helicopter flight vibration data and tailboom static test data with NASTRAN analytical results
Level flight airframe vibration at main rotor excitation frequencies was calculated. A NASTRAN tailboom analysis was compared with test data for evaluation of methods used to determine effective skin in a semimonocoque sheet-stringer structure. The flight vibration correlation involved comparison of level flight vibration for two helicopter configurations: clean wing, at light gross weight and wing stores at heavy gross weight. In the tailboom correlation, deflections and internal loads were compared using static test data and a NASTRAN analysis. An iterative procedure was used to determine the amount of effective skin of buckled panels under compression load
The three-body problem and the Hannay angle
The Hannay angle has been previously studied for a celestial circular
restricted three-body system by means of an adiabatic approach. In the present
work, three main results are obtained. Firstly, a formal connection between
perturbation theory and the Hamiltonian adiabatic approach shows that both lead
to the Hannay angle; it is thus emphasised that this effect is already
contained in classical celestial mechanics, although not yet defined nor
evaluated separately. Secondly, a more general expression of the Hannay angle,
valid for an action-dependent potential is given; such a generalised expression
takes into account that the restricted three-body problem is a time-dependent,
two degrees of freedom problem even when restricted to the circular motion of
the test body. Consequently, (some of) the eccentricity terms cannot be
neglected {\it a priori}. Thirdly, we present a new numerical estimate for the
Earth adiabatically driven by Jupiter. We also point out errors in a previous
derivation of the Hannay angle for the circular restricted three-body problem,
with an action-independent potential.Comment: 11 pages. Accepted by Nonlinearit
Observation of a Chiral State in a Microwave Cavity
A microwave experiment has been realized to measure the phase difference of
the oscillating electric field at two points inside the cavity. The technique
has been applied to a dissipative resonator which exhibits a singularity --
called exceptional point -- in its eigenvalue and eigenvector spectrum. At the
singularity, two modes coalesce with a phase difference of We
conclude that the state excited at the singularity has a definitiv chirality.Comment: RevTex 4, 5 figure
Dynamical diffraction in sinusoidal potentials: uniform approximations for Mathieu functions
Eigenvalues and eigenfunctions of Mathieu's equation are found in the short
wavelength limit using a uniform approximation (method of comparison with a
`known' equation having the same classical turning point structure) applied in
Fourier space. The uniform approximation used here relies upon the fact that by
passing into Fourier space the Mathieu equation can be mapped onto the simpler
problem of a double well potential. The resulting eigenfunctions (Bloch waves),
which are uniformly valid for all angles, are then used to describe the
semiclassical scattering of waves by potentials varying sinusoidally in one
direction. In such situations, for instance in the diffraction of atoms by
gratings made of light, it is common to make the Raman-Nath approximation which
ignores the motion of the atoms inside the grating. When using the
eigenfunctions no such approximation is made so that the dynamical diffraction
regime (long interaction time) can be explored.Comment: 36 pages, 16 figures. This updated version includes important
references to existing work on uniform approximations, such as Olver's method
applied to the modified Mathieu equation. It is emphasised that the paper
presented here pertains to Fourier space uniform approximation
Adaptive Measurements in the Optical Quantum Information Laboratory
Adaptive techniques make practical many quantum measurements that would
otherwise be beyond current laboratory capabilities. For example: they allow
discrimination of nonorthogonal states with a probability of error equal to the
Helstrom bound; they allow measurement of the phase of a quantum oscillator
with accuracy approaching (or in some cases attaining) the Heisenberg limit;
and they allow estimation of phase in interferometry with a variance scaling at
the Heisenberg limit, using only single qubit measurement and control. Each of
these examples has close links with quantum information, in particular
experimental optical quantum information: the first is a basic quantum
communication protocol; the second has potential application in linear optical
quantum computing; the third uses an adaptive protocol inspired by the quantum
phase estimation algorithm. We discuss each of these examples, and their
implementation in the laboratory, but concentrate upon the last, which was
published most recently [Higgins {\em et al.}, Nature vol. 450, p. 393, 2007].Comment: 12 pages, invited paper to be published in IEEE Journal of Selected
Topics in Quantum Electronics: Quantum Communications and Information Scienc
Geometric Phase, Hannay's Angle, and an Exact Action Variable
Canonical structure of a generalized time-periodic harmonic oscillator is
studied by finding the exact action variable (invariant). Hannay's angle is
defined if closed curves of constant action variables return to the same curves
in phase space after a time evolution. The condition for the existence of
Hannay's angle turns out to be identical to that for the existence of a
complete set of (quasi)periodic wave functions. Hannay's angle is calculated,
and it is shown that Berry's relation of semiclassical origin on geometric
phase and Hannay's angle is exact for the cases considered.Comment: Submitted to Phys. Rev. Lett. (revised version
- …