27,641 research outputs found

    Adaptive Quantum Measurements of a Continuously Varying Phase

    Get PDF
    We analyze the problem of quantum-limited estimation of a stochastically varying phase of a continuous beam (rather than a pulse) of the electromagnetic field. We consider both non-adaptive and adaptive measurements, and both dyne detection (using a local oscillator) and interferometric detection. We take the phase variation to be \dot\phi = \sqrt{\kappa}\xi(t), where \xi(t) is \delta-correlated Gaussian noise. For a beam of power P, the important dimensionless parameter is N=P/\hbar\omega\kappa, the number of photons per coherence time. For the case of dyne detection, both continuous-wave (cw) coherent beams and cw (broadband) squeezed beams are considered. For a coherent beam a simple feedback scheme gives good results, with a phase variance \simeq N^{-1/2}/2. This is \sqrt{2} times smaller than that achievable by nonadaptive (heterodyne) detection. For a squeezed beam a more accurate feedback scheme gives a variance scaling as N^{-2/3}, compared to N^{-1/2} for heterodyne detection. For the case of interferometry only a coherent input into one port is considered. The locally optimal feedback scheme is identified, and it is shown to give a variance scaling as N^{-1/2}. It offers a significant improvement over nonadaptive interferometry only for N of order unity.Comment: 11 pages, 6 figures, journal versio

    Berry phase, topology, and diabolicity in quantum nano-magnets

    Full text link
    A topological theory of the diabolical points (degeneracies) of quantum magnets is presented. Diabolical points are characterized by their diabolicity index, for which topological sum rules are derived. The paradox of the the missing diabolical points for Fe8 molecular magnets is clarified. A new method is also developed to provide a simple interpretation, in terms of destructive interferences due to the Berry phase, of the complete set of diabolical points found in biaxial systems such as Fe8.Comment: 4 pages, 3 figure

    Correlation of AH-1G helicopter flight vibration data and tailboom static test data with NASTRAN analytical results

    Get PDF
    Level flight airframe vibration at main rotor excitation frequencies was calculated. A NASTRAN tailboom analysis was compared with test data for evaluation of methods used to determine effective skin in a semimonocoque sheet-stringer structure. The flight vibration correlation involved comparison of level flight vibration for two helicopter configurations: clean wing, at light gross weight and wing stores at heavy gross weight. In the tailboom correlation, deflections and internal loads were compared using static test data and a NASTRAN analysis. An iterative procedure was used to determine the amount of effective skin of buckled panels under compression load

    The three-body problem and the Hannay angle

    Full text link
    The Hannay angle has been previously studied for a celestial circular restricted three-body system by means of an adiabatic approach. In the present work, three main results are obtained. Firstly, a formal connection between perturbation theory and the Hamiltonian adiabatic approach shows that both lead to the Hannay angle; it is thus emphasised that this effect is already contained in classical celestial mechanics, although not yet defined nor evaluated separately. Secondly, a more general expression of the Hannay angle, valid for an action-dependent potential is given; such a generalised expression takes into account that the restricted three-body problem is a time-dependent, two degrees of freedom problem even when restricted to the circular motion of the test body. Consequently, (some of) the eccentricity terms cannot be neglected {\it a priori}. Thirdly, we present a new numerical estimate for the Earth adiabatically driven by Jupiter. We also point out errors in a previous derivation of the Hannay angle for the circular restricted three-body problem, with an action-independent potential.Comment: 11 pages. Accepted by Nonlinearit

    Observation of a Chiral State in a Microwave Cavity

    Full text link
    A microwave experiment has been realized to measure the phase difference of the oscillating electric field at two points inside the cavity. The technique has been applied to a dissipative resonator which exhibits a singularity -- called exceptional point -- in its eigenvalue and eigenvector spectrum. At the singularity, two modes coalesce with a phase difference of π/2.\pi/2 . We conclude that the state excited at the singularity has a definitiv chirality.Comment: RevTex 4, 5 figure

    Musculoskeletal adaptations to physical interventions in spinal cord injury

    Get PDF

    Dynamical diffraction in sinusoidal potentials: uniform approximations for Mathieu functions

    Get PDF
    Eigenvalues and eigenfunctions of Mathieu's equation are found in the short wavelength limit using a uniform approximation (method of comparison with a `known' equation having the same classical turning point structure) applied in Fourier space. The uniform approximation used here relies upon the fact that by passing into Fourier space the Mathieu equation can be mapped onto the simpler problem of a double well potential. The resulting eigenfunctions (Bloch waves), which are uniformly valid for all angles, are then used to describe the semiclassical scattering of waves by potentials varying sinusoidally in one direction. In such situations, for instance in the diffraction of atoms by gratings made of light, it is common to make the Raman-Nath approximation which ignores the motion of the atoms inside the grating. When using the eigenfunctions no such approximation is made so that the dynamical diffraction regime (long interaction time) can be explored.Comment: 36 pages, 16 figures. This updated version includes important references to existing work on uniform approximations, such as Olver's method applied to the modified Mathieu equation. It is emphasised that the paper presented here pertains to Fourier space uniform approximation

    Adaptive Measurements in the Optical Quantum Information Laboratory

    Get PDF
    Adaptive techniques make practical many quantum measurements that would otherwise be beyond current laboratory capabilities. For example: they allow discrimination of nonorthogonal states with a probability of error equal to the Helstrom bound; they allow measurement of the phase of a quantum oscillator with accuracy approaching (or in some cases attaining) the Heisenberg limit; and they allow estimation of phase in interferometry with a variance scaling at the Heisenberg limit, using only single qubit measurement and control. Each of these examples has close links with quantum information, in particular experimental optical quantum information: the first is a basic quantum communication protocol; the second has potential application in linear optical quantum computing; the third uses an adaptive protocol inspired by the quantum phase estimation algorithm. We discuss each of these examples, and their implementation in the laboratory, but concentrate upon the last, which was published most recently [Higgins {\em et al.}, Nature vol. 450, p. 393, 2007].Comment: 12 pages, invited paper to be published in IEEE Journal of Selected Topics in Quantum Electronics: Quantum Communications and Information Scienc

    Geometric Phase, Hannay's Angle, and an Exact Action Variable

    Full text link
    Canonical structure of a generalized time-periodic harmonic oscillator is studied by finding the exact action variable (invariant). Hannay's angle is defined if closed curves of constant action variables return to the same curves in phase space after a time evolution. The condition for the existence of Hannay's angle turns out to be identical to that for the existence of a complete set of (quasi)periodic wave functions. Hannay's angle is calculated, and it is shown that Berry's relation of semiclassical origin on geometric phase and Hannay's angle is exact for the cases considered.Comment: Submitted to Phys. Rev. Lett. (revised version
    • …
    corecore