6 research outputs found

    First-in-Human Gene Therapy Trial of AAV8-hCARp.hCNGB3 in Adults and Children With CNGB3-associated Achromatopsia

    Get PDF
    PURPOSE: To assess the safety and efficacy of AAV8-hCARp.hCNGB3 in participants with CNGB3-associated achromatopsia (ACHM). DESIGN: Prospective, phase 1/2 (NCT03001310), open-label, nonrandomized clinical trial. METHODS: The study enrolled 23 adults and children with CNGB3-associated ACHM. In the dose-escalation phase, adult participants were administered 1 of 3 AAV8-hCARp.hCNGB3 dose levels in the worse-seeing eye (up to 0.5 mL). After a maximum tolerated dose was established in adults, an expansion phase was conducted in children ≥3 years old. All participants received topical and oral corticosteroids. Safety and efficacy parameters, including treatment-related adverse events and visual acuity, retinal sensitivity, color vision, and light sensitivity, were assessed for 6 months. RESULTS: AAV8-hCARp.hCNGB3 (11 adults, 12 children) was safe and generally well tolerated. Intraocular inflammation occurred in 9 of 23 participants and was mainly mild or moderate in severity. Severe cases occurred primarily at the highest dose. Two events were considered serious and dose limiting. All intraocular inflammation resolved following topical and systemic steroids. There was no consistent pattern of change from baseline to week 24 for any efficacy assessment. However, favorable changes were observed for individual participants across several assessments, including color vision (n = 6/23), photoaversion (n = 11/20), and vision-related quality-of-life questionnaires (n = 21/23). CONCLUSIONS: AAV8-hCARp.hCNGB3 for CNGB3-associated ACHM demonstrated an acceptable safety and tolerability profile. Improvements in several efficacy parameters indicate that AAV8-hCARp.hCNGB3 gene therapy may provide benefit. These findings, with the development of additional sensitive and quantitative end points, support continued investigation

    First-in-Human Gene Therapy Trial of AAV8-hCARp.hCNGB3 in Adults and Children With CNGB3-associated Achromatopsia

    Get PDF
    Purpose: To assess the safety and efficacy of AAV8-hCARp.hCNGB3 in participants with CNGB3-associated achromatopsia (ACHM). Design: Prospective, phase 1/2 (NCT03001310), open-label, nonrandomized clinical trial. Methods: The study enrolled 23 adults and children with CNGB3-associated ACHM. In the dose-escalation phase, adult participants were administered 1 of 3 AAV8-hCARp.hCNGB3 dose levels in the worse-seeing eye (up to 0.5 mL). After a maximum tolerated dose was established in adults, an expansion phase was conducted in children ≥3 years old. All participants received topical and oral corticosteroids. Safety and efficacy parameters, including treatment-related adverse events and visual acuity, retinal sensitivity, color vision, and light sensitivity, were assessed for 6 months. Results: AAV8-hCARp.hCNGB3 (11 adults, 12 children) was safe and generally well tolerated. Intraocular inflammation occurred in 9 of 23 participants and was mainly mild or moderate in severity. Severe cases occurred primarily at the highest dose. Two events were considered serious and dose limiting. All intraocular inflammation resolved following topical and systemic steroids. There was no consistent pattern of change from baseline to week 24 for any efficacy assessment. However, favorable changes were observed for individual participants across several assessments, including color vision (n = 6/23), photoaversion (n = 11/20), and vision-related quality-of-life questionnaires (n = 21/23). Conclusions: AAV8-hCARp.hCNGB3 for CNGB3-associated ACHM demonstrated an acceptable safety and tolerability profile. Improvements in several efficacy parameters indicate that AAV8-hCARp.hCNGB3 gene therapy may provide benefit. These findings, with the development of additional sensitive and quantitative end points, support continued investigation.</p

    High-resolution crystal structure of human asparagine synthetase enables analysis of inhibitor binding and selectivity

    Get PDF
    Expression of human asparagine synthetase (ASNS) promotes metastatic progression and tumor cell invasiveness in colorectal and breast cancer, presumably by altering cellular levels of L-asparagine. Human ASNS is therefore emerging as a bona fide drug target for cancer therapy. Here we show that a slow-onset, tight binding inhibitor, which exhibits nanomolar affinity for human ASNS in vitro, exhibits excellent selectivity at 10 μM concentration in HCT-116 cell lysates with almost no off-target binding. The high-resolution (1.85 Å) crystal structure of human ASNS has enabled us to identify a cluster of negatively charged side chains in the synthetase domain that plays a key role in inhibitor binding. Comparing this structure with those of evolutionarily related AMP-forming enzymes provides insights into intermolecular interactions that give rise to the observed binding selectivity. Our findings demonstrate the feasibility of developing second generation human ASNS inhibitors as lead compounds for the discovery of drugs against metastasis

    Progressive Punitivism: Notes on the Use of Punitive Social Control to Advance Social Justice Ends

    No full text

    Genomic reconstruction of the SARS-CoV-2 epidemic in England

    Get PDF
    AbstractThe evolution of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus leads to new variants that warrant timely epidemiological characterization. Here we use the dense genomic surveillance data generated by the COVID-19 Genomics UK Consortium to reconstruct the dynamics of 71 different lineages in each of 315 English local authorities between September 2020 and June 2021. This analysis reveals a series of subepidemics that peaked in early autumn 2020, followed by a jump in transmissibility of the B.1.1.7/Alpha lineage. The Alpha variant grew when other lineages declined during the second national lockdown and regionally tiered restrictions between November and December 2020. A third more stringent national lockdown suppressed the Alpha variant and eliminated nearly all other lineages in early 2021. Yet a series of variants (most of which contained the spike E484K mutation) defied these trends and persisted at moderately increasing proportions. However, by accounting for sustained introductions, we found that the transmissibility of these variants is unlikely to have exceeded the transmissibility of the Alpha variant. Finally, B.1.617.2/Delta was repeatedly introduced in England and grew rapidly in early summer 2021, constituting approximately 98% of sampled SARS-CoV-2 genomes on 26 June 2021.</jats:p
    corecore