390 research outputs found

    A population synthesis study of the luminosity function of hot white dwarfs

    Full text link
    We present a coherent and detailed Monte Carlo simulation of the population of hot white dwarfs. We assess the statistical significance of the hot end of the white dwarf luminosity function and the role played by the bolometric corrections of hydrogen-rich white dwarfs at high effective temperatures. We use the most up-to-date stellar evolutionary models and implement a full description of the observational selection biases to obtain realistic simulations of the observed white dwarf population. Our theoretical results are compared with the luminosity function of hot white dwarfs obtained from the Sloan Digital Sky Survey (SDSS), for both DA and non-DA white dwarfs. We find that the theoretical results are in excellent agreement with the observational data for the population of white dwarfs with hydrogen deficient atmospheres (non-DA white dwarfs). For the population of white dwarfs with hydrogen-rich atmospheres (white dwarfs of the DA class), our simulations show some discrepancies with the observations for the brightest luminosity bins. These discrepancies can be attributed to the way in which the masses of the white dwarfs contributing to this luminosity bin have been computed, as most of them have masses smaller than the theoretical lower limit for carbon-oxygen white dwarfs. We conclude that the way in which the observational luminosity function of hot white dwarfs is obtained is very sensitive to the particular implementation of the method used to derive the masses of the sample. We also provide a revised luminosity function for hot white dwarfs with hydrogen-rich atmospheres.Comment: 6 pages, 5 figures, accepted for publication in A&

    Monte Carlo simulations of the halo white dwarf population

    Full text link
    The interpretation of microlensing results towards the Large Magellanic Cloud (LMC) still remains controversial. Whereas white dwarfs have been proposed to explain these results and, hence, to contribute significantly to the mass budget of our Galaxy, there are as well several constraints on the role played by white dwarfs. In this paper we analyze self-consistently and simultaneously four different results, namely, the local halo white dwarf luminosity function, the microlensing results reported by the MACHO team towards the LMC, the results of Hubble Deep Field (HDF) and the results of the EROS experiment, for several initial mass functions and halo ages. We find that the proposed log-normal initial mass functions do not contribute to solve the problem posed by the observed microlensing events and, moreover, they overproduce white dwarfs when compared to the results of the HDF and of the EROS survey. We also find that the contribution of hydrogen-rich white dwarfs to the dynamical mass of the halo of the Galaxy cannot be more than 4\sim 4%.Comment: 17 pages, 10 figures; accepted for publication in Astronomy and Astrophysic

    New phase diagrams for dense carbon-oxygen mixtures and white dwarf evolution

    Get PDF
    Cool white dwarfs are reliable and independent stellar chronometers. The most common white dwarfs have carbon-oxygen dense cores. Consequently, the cooling ages of very cool white dwarfs sensitively depend on the adopted phase diagram of the carbon-oxygen binary mixture. A new phase diagram of dense carbon-oxygen mixtures appropriate for white dwarf interiors has been recently obtained using direct molecular dynamics simulations. In this paper, we explore the consequences of this phase diagram in the evolution of cool white dwarfs. To do this we employ a detailed stellar evolutionary code and accurate initial white dwarf configurations, derived from the full evolution of progenitor stars. We use two different phase diagrams, that of Horowitz et al. (2010), which presents an azeotrope, and the phase diagram of Segretain & Chabrier (1993), which is of the spindle form. We computed the evolution of 0.593 and 0.878M_sun white dwarf models during the crystallization phase, and we found that the energy released by carbon-oxygen phase separation is smaller when the new phase diagram of Horowitz et al. (2010) is used. This translates into time delays that are on average a factor about 2 smaller than those obtained when the phase diagram of Segretain & Chabrier (1993) is employed. Our results have important implications for white dwarf cosmochronology, because the cooling ages of very old white dwarfs are different for the two phase diagrams. This may have a noticeable impact on the age determinations of very old globular clusters, for which the white dwarf color-magnitude diagram provides an independent way of estimating their age.Comment: 7 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    The white dwarf cooling sequence of NGC 6791: a unique tool for stellar evolution

    Get PDF
    NGC 6791 is a well-studied, metal-rich open cluster that is so close to us that can be imaged down to luminosities fainter than that of the termination of its white dwarf cooling sequence, thus allowing for an in-depth study of its white dwarf population. We use a Monte Carlo simulator that employs up-to-date evolutionary cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, with carbon-oxygen and helium cores. The cooling sequences for carbon-oxygen cores account for the delays introduced by both Ne^22 sedimentation in the liquid phase and by carbon-oxygen phase separation upon crystallization. We do not find evidence for a substantial fraction of helium-core white dwarfs, and hence our results support the suggestion that the origin of the bright peak of the white dwarf luminosity function can only be attributed to a population of unresolved binary white dwarfs. Moreover, our results indicate that the number distribution of secondary masses of the population of unresolved binaries has to increase with increasing mass ratio between the secondary and primary components of the progenitor system. We also find that the observed cooling sequence appears to be able to constrain the presence of progenitor sub-populations with different chemical compositions and the fraction of non-DA white dwarfs. Our simulations place interesting constraints on important characteristics of the stellar populations of NGC 6791. In particular, we find that the fraction of single helium-core white dwarfs must be smaller than 5%, that a sub-population of stars with zero metallicity must be <12%, while if the adopted metallicity of the sub-population is solar the upper limit is ~8%. Finally, we also find that the fraction of non-DA white dwarfs in this particular cluster is surprinsingly small <6%.Comment: 9 pages, 14 figures, accepted for publication in Astronomy & Astrophysic
    corecore