152 research outputs found
A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes
NGC 6791 is a well studied open cluster1 that it is so close to us that can
be imaged down to very faint luminosities. The main sequence turn-off age (~8
Gyr) and the age derived from the termination of the white dwarf cooling
sequence (~6 Gyr) are significantly different. One possible explanation is that
as white dwarfs cool, one of the ashes of helium burning, 22Ne, sinks in the
deep interior of these stars. At lower temperatures, white dwarfs are expected
to crystallise and phase separation of the main constituents of the core of a
typical white dwarf, 12C and 16O, is expected to occur. This sequence of events
is expected to introduce significant delays in the cooling times, but has not
hitherto been proven. Here we report that, as theoretically anticipated,
physical separation processes occur in the cores of white dwarfs, solving the
age discrepancy for NGC 6791.Comment: 3 pages, 2 figures, published in Natur
Revisiting the theoretical DBV (V777 Her) instability strip: the MLT theory of convection
We reexamine the theoretical instability domain of pulsating DB white dwarfs
(DBV or V777 Her variables). We performed an extensive -mode nonadiabatic
pulsation analysis of DB evolutionary models considering a wide range of
stellar masses, for which the complete evolutionary stages of their progenitors
from the ZAMS, through the thermally pulsing AGB and born-again phases, the
domain of the PG1159 stars, the hot phase of DO white dwarfs, and then the DB
white dwarf stage have been considered. We explicitly account for the evolution
of the chemical abundance distribution due to time-dependent chemical diffusion
processes. We examine the impact of the different prescriptions of the MLT
theory of convection and the effects of small amounts of H in the almost
He-pure atmospheres of DB stars on the precise location of the theoretical blue
edge of the DBV instability strip.Comment: Proceedings, 16th European White Dwarf Workshop, Barcelona, 200
Evolutionary calculations of phase separation in crystallizing white dwarf stars
We present an exploration of the significance of Carbon/Oxygen phase
separation in white dwarf stars in the context of self-consistent evolutionary
calculations. Because phase separation can potentially increase the calculated
ages of the oldest white dwarfs, it can affect the age of the Galactic disk as
derived from the downturn in the white dwarf luminosity function. We find that
the largest possible increase in ages due to phase separation is 1.5 Gyr, with
a most likely value of approximately 0.6 Gyr, depending on the parameters of
our white dwarf models.
The most important factors influencing the size of this delay are the total
stellar mass, the initial composition profile, and the phase diagram assumed
for crystallization. We find a maximum age delay in models with masses of 0.6
solar masses, which is near the peak in the observed white dwarf mass
distribution. We find that varying the opacities (via the metallicity) has
little effect on the calculated age delays.
In the context of Galactic evolution, age estimates for the oldest Galactic
globular clusters range from 11.5 to 16 Gyr, and depend on a variety of
parameters. In addition, a 4 to 6 Gyr delay is expected between the formation
of the globular clusters and that of the Galactic thin disk, while the observed
white dwarf luminosity function gives an age estimate for the thin disk of 9.5
+/-1.0 Gyr, without including the effect of phase separation. Using the above
numbers, we see that phase separation could add between 0 to 3 Gyr to the white
dwarf ages and still be consistent with the overall picture of Galaxy
formation. Our calculated maximum value of 1.5 Gyr fits within these bounds, as
does our best guess value of 0.6 Gyr.Comment: 13 total pages, 8 figures, 3 tables, accepted for publication in the
Astrophysical Journal on May 25, 199
The halo white dwarf population
Halo white dwarfs can provide important information about the properties and
evolution of the galactic halo. In this paper we compute, assuming a standard
IMF and updated models of white dwarf cooling, the expected luminosity
function, both in luminosity and in visual magnitude, for different star
formation rates. We show that a deep enough survey (limiting magnitude > 20)
could provide important information about the halo age and the duration of the
formation stage. We also show that the number of white dwarfs produced using
the recently proposed biased IMFs cannot represent a large fraction of the halo
dark matter if they are constrained by the presently observed luminosity
function. Furthermore, we show that a robust determination of the bright
portion of the luminosity function can provide strong constraints on the
allowable IMF shapes.Comment: 29 pages (AASTeX), 7 eps figures included, accepted for publication
in Ap
Mass transfer dynamics in double degenerate binary systems
We present a numerical study of the mass transfer dynamics prior to the
gravitational wave-driven merger of a double white dwarf system. Recently,
there has been some discussion about the dynamics of these last stages,
different methods seemed to provide qualitatively different results. While
earlier SPH simulations indicated a very quick disruption of the binary on
roughly the orbital time scale, more recent grid-based calculations find
long-lived mass transfer for many orbital periods. Here we demonstrate how
sensitive the dynamics of this last stage is to the exact initial conditions.
We show that, after a careful preparation of the initial conditions, the
reportedly short-lived systems undergo mass transfer for many dozens of orbits.
The reported numbers of orbits are resolution-biased and therefore represent
only lower limits to what is realized in nature. Nevertheless, the study shows
convincingly the convergence of different methods to very similar results.Comment: 5 pages, 3 figures, for associated movie files, see
http://pandora.jacobs-university.de/~mdan/WD_coalescences.htm, to appear in
Journal of Physics Conference Proceedings for the 16th European White Dwarf
Worksho
A Survey of key methods, traits, parameters, and conditions for measuring texture in cranberry (Vaccinium macrocarpon Ait.)
In the cranberry (Vaccinium macrocarpon Ait.) industry, the textural properties and firmness of the fruit are priority traits for producing processed products, such as sweetened dried cranberry (SDC), which have gained popularity in recent years. However, there is currently no reliable methodology for screening these traits in breeding programs. In this study, we examine the key methodologies, textural traits, parameters, and conditions that are necessary to accurately and efficiently measure the texture of cranberry fruit. Double compression, single compression, puncture, shearing and Kramer shear cell methodologies were successfully implemented in cranberry, resulting in a total of 47 textural features. These features allowed the evaluation of the texture of the cranberry fruit based on key factors such as flesh, structure, and skin. This study also examined factors than can affect the performance of texture measurements, including the optimal sample size, storage time, fruit texture-size correlation, fruit temperature and orientation, optimal speed/strain combinations, and the effect of probe diameter. The results of the study suggests that certain texture traits of the compression and puncture methodologies could potentially be used to test varieties and aid in breeding program
The LISA PathFinder DMU and Radiation Monitor
The LISA PathFinder DMU (Data Management Unit) flight model was formally
accepted by ESA and ASD on 11 February 2010, after all hardware and software
tests had been successfully completed. The diagnostics items are scheduled to
be delivered by the end of 2010. In this paper we review the requirements and
performance of this instrumentation, specially focusing on the Radiation
Monitor and the DMU, as well as the status of their programmed use during
mission operations, on which work is ongoing at the time of writing.Comment: 11 pages, 7 figures, prepared for the Proceedings of the 8th
International LISA Symposium, Classical and Quantum Gravit
Charged Scalar-Tensor Boson Stars: Equilibrium, Stability and Evolution
We study charged boson stars in scalar-tensor (ST) gravitational theories. We
analyse the weak field limit of the solutions and analytically show that there
is a maximum charge to mass ratio for the bosons above which the weak field
solutions are not stable. This charge limit can be greater than the GR limit
for a wide class of ST theories. We numerically investigate strong field
solutions in both the Brans Dicke and power law ST theories. We find that the
charge limit decreases with increasing central boson density. We discuss the
gravitational evolution of charged and uncharged boson stars in a cosmological
setting and show how, at any point in its evolution, the physical properties of
the star may be calculated by a rescaling of a solution whose asymptotic value
of the scalar field is equal to its initial asymptotic value. We focus on
evolution in which the particle number of the star is conserved and we find
that the energy and central density of the star decreases as the cosmological
time increases. We also analyse the appearance of the scalarization phenomenon
recently discovered for neutron stars configurations and, finally, we give a
short discussion on how making the correct choice of mass influences the
argument over which conformal frame, the Einstein frame or the Jordan frame, is
physical.Comment: RevTeX, 27 pages, 9 postscript figures. Minor revisions and updated
references. Accepted for publication in Phys. Rev.
Scalar-Tensor Models of Normal and Phantom Dark Energy
We consider the viability of dark energy (DE) models in the framework of the
scalar-tensor theory of gravity, including the possibility to have a phantom DE
at small redshifts as admitted by supernova luminosity-distance data. For
small , the generic solution for these models is constructed in the form of
a power series in without any approximation. Necessary constraints for DE
to be phantom today and to cross the phantom divide line at small
are presented. Considering the Solar System constraints, we find for the
post-Newtonian parameters that and for
the model to be viable, and (but very close to 1) if the model
has a significantly phantom DE today. However, prospects to establish the
phantom behaviour of DE are much better with cosmological data than with Solar
System experiments. Earlier obtained results for a -dominated universe
with the vanishing scalar field potential are extended to a more general DE
equation of state confirming that the cosmological evolution of these models
rule them out. Models of currently fantom DE which are viable for small can
be easily constructed with a constant potential; however, they generically
become singular at some higher . With a growing potential, viable models
exist up to an arbitrary high redshift.Comment: 30 pages, 4 figures; Matches the published version containing an
expanded discussion of various point
Dimensionless cosmology
Although it is well known that any consideration of the variations of
fundamental constants should be restricted to their dimensionless combinations,
the literature on variations of the gravitational constant is entirely
dimensionful. To illustrate applications of this to cosmology, we explicitly
give a dimensionless version of the parameters of the standard cosmological
model, and describe the physics of Big Bang Neucleosynthesis and recombination
in a dimensionless manner. The issue that appears to have been missed in many
studies is that in cosmology the strength of gravity is bound up in the
cosmological equations, and the epoch at which we live is a crucial part of the
model. We argue that it is useful to consider the hypothetical situation of
communicating with another civilization (with entirely different units),
comparing only dimensionless constants, in order to decide if we live in a
Universe governed by precisely the same physical laws. In this thought
experiment, we would also have to compare epochs, which can be defined by
giving the value of any {\it one} of the evolving cosmological parameters. By
setting things up carefully in this way one can avoid inconsistent results when
considering variable constants, caused by effectively fixing more than one
parameter today. We show examples of this effect by considering microwave
background anisotropies, being careful to maintain dimensionlessness
throughout. We present Fisher matrix calculations to estimate how well the fine
structure constants for electromagnetism and gravity can be determined with
future microwave background experiments. We highlight how one can be misled by
simply adding to the usual cosmological parameter set
- âŠ