239 research outputs found

    Plasma levels of nitric oxide related amino acids in demented subjects with Down syndrome are related to neopterin concentrations

    Get PDF
    Subjects with Down syndrome (DS) have abnormalities in virtually all aspects of the immune system and almost all will be affected with Alzheimer’s disease (AD). It is thought that nitric oxide (NO) is involved in the pathophysiology of AD. In the present study, including a total of 401 elderly DS subjects, the spectrum of plasma amino acids and neopterin was investigated and related to development of AD. Concentrations of nearly all amino acids in DS subjects differed significantly from those of healthy controls. Neopterin was increased in DS subjects, especially in dementia. The production of NO as reflected by an increased citrulline/arginine ratio (Cit/Arg ratio) was enhanced during development of clinical dementia. Neopterin concentrations correlated to the Cit/Arg ratio only in the group of prevalent demented subjects (ρ = 0.48, P = 0.006). The results of this study are suggestive for an increase in oxidative processes in DS subjects with AD

    Inter- and intraobserver reliability of the MTM-classification for proximal humeral fractures: A prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A precise modular topographic-morphological (MTM) classification for proximal humeral fractures may address current classification problems. The classification was developed to evaluate whether a very detailed classification exceeding the analysis of fractured parts may be a valuable tool.</p> <p>Methods</p> <p>Three observers classified plain radiographs of 22 fractures using both a simple version (fracture displacement, number of parts) and an extensive version (individual topographic fracture type and morphology) of the MTM classification. Kappa-statistics were used to determine reliability.</p> <p>Results</p> <p>An acceptable reliability was found for the simple version classifying fracture displacement and fractured main parts. Fair interobserver agreement was found for the extensive version with individual topographic fracture type and morphology.</p> <p>Conclusion</p> <p>Although the MTM-classification covers a wide spectrum of fracture types, our results indicate that the precise topographic and morphological description is not delivering reproducible results. Therefore, simplicity in fracture classification may be more useful than extensive approaches, which are not adequately reliable to address current classification problems.</p

    Functional Anatomy of Polycomb and Trithorax Chromatin Landscapes in Drosophila Embryos

    Get PDF
    Polycomb group (PcG) and trithorax group (trxG) proteins are conserved chromatin factors that regulate key developmental genes throughout development. In Drosophila, PcG and trxG factors bind to regulatory DNA elements called PcG and trxG response elements (PREs and TREs). Several DNA binding proteins have been suggested to recruit PcG proteins to PREs, but the DNA sequences necessary and sufficient to define PREs are largely unknown. Here, we used chromatin immunoprecipitation (ChIP) on chip assays to map the chromosomal distribution of Drosophila PcG proteins, the N- and C-terminal fragments of the Trithorax (TRX) protein and four candidate DNA-binding factors for PcG recruitment. In addition, we mapped histone modifications associated with PcG-dependent silencing and TRX-mediated activation. PcG proteins colocalize in large regions that may be defined as polycomb domains and colocalize with recruiters to form several hundreds of putative PREs. Strikingly, the majority of PcG recruiter binding sites are associated with H3K4me3 and not with PcG binding, suggesting that recruiter proteins have a dual function in activation as well as silencing. One major discriminant between activation and silencing is the strong binding of Pleiohomeotic (PHO) to silenced regions, whereas its homolog Pleiohomeotic-like (PHOL) binds preferentially to active promoters. In addition, the C-terminal fragment of TRX (TRX-C) showed high affinity to PcG binding sites, whereas the N-terminal fragment (TRX-N) bound mainly to active promoter regions trimethylated on H3K4. Our results indicate that DNA binding proteins serve as platforms to assist PcG and trxG binding. Furthermore, several DNA sequence features discriminate between PcG- and TRX-N–bound regions, indicating that underlying DNA sequence contains critical information to drive PREs and TREs towards silencing or activation

    Negative Regulation of EGFR/MAPK Pathway by Pumilio in Drosophila melanogaster

    Get PDF
    In Drosophila melanogaster, specification of wing vein cells and sensory organ precursor (SOP) cells, which later give rise to a bristle, requires EGFR signaling. Here, we show that Pumilio (Pum), an RNA-binding translational repressor, negatively regulates EGFR signaling in wing vein and bristle development. We observed that loss of Pum function yielded extra wing veins and additional bristles. Conversely, overexpression of Pum eliminated wing veins and bristles. Heterozygotes for Pum produced no phenotype on their own, but greatly enhanced phenotypes caused by the enhancement of EGFR signaling. Conversely, over-expression of Pum suppressed the effects of ectopic EGFR signaling. Components of the EGFR signaling pathway are encoded by mRNAs that have Nanos Response Element (NRE)–like sequences in their 3’UTRs; NREs are known to bind Pum to confer regulation in other mRNAs. We show that these NRE-like sequences bind Pum and confer repression on a luciferase reporter in heterologous cells. Taken together, our evidence suggests that Pum functions as a negative regulator of EGFR signaling by directly targeting components of the pathway in Drosophila

    Oligoasthenoteratozoospermia and Infertility in Mice Deficient for miR-34b/c and miR-449 Loci

    Get PDF
    Male fertility requires the continuous production of high quality motile spermatozoa in abundance. Alterations in all three metrics cause oligoasthenoteratozoospermia, the leading cause of human sub/infertility. Post-mitotic spermatogenesis inclusive of several meiotic stages and spermiogenesis (terminal spermatozoa differentiation) are transcriptionally inert, indicating the potential importance for the post-transcriptional microRNA (miRNA) gene-silencing pathway therein. We found the expression of miRNA generating enzyme Dicer within spermatogenesis peaks in meiosis with critical functions in spermatogenesis. In an expression screen we identified two miRNA loci of the miR-34 family (miR-34b/c and miR-449) that are specifically and highly expressed in post-mitotic male germ cells. A reduction in several miRNAs inclusive of miR-34b/c in spermatozoa has been causally associated with reduced fertility in humans. We found that deletion of both miR34b/c and miR-449 loci resulted in oligoasthenoteratozoospermia in mice. MiR-34bc/449-deficiency impairs both meiosis and the final stages of spermatozoa maturation. Analysis of miR-34bc-/-;449-/- pachytene spermatocytes revealed a small cohort of genes deregulated that were highly enriched for miR-34 family target genes. Our results identify the miR-34 family as the first functionally important miRNAs for spermatogenesis whose deregulation is causal to oligoasthenoteratozoospermia and infertility

    Cholera Toxin B Subunits Assemble into Pentamers - Proposition of a Fly-Casting Mechanism

    Get PDF
    The cholera toxin B pentamer (CtxB5), which belongs to the AB5 toxin family, is used as a model study for protein assembly. The effect of the pH on the reassembly of the toxin was investigated using immunochemical, electrophoretic and spectroscopic methods. Three pH-dependent steps were identified during the toxin reassembly: (i) acquisition of a fully assembly-competent fold by the CtxB monomer, (ii) association of CtxB monomer into oligomers, (iii) acquisition of the native fold by the CtxB pentamer. The results show that CtxB5 and the related heat labile enterotoxin LTB5 have distinct mechanisms of assembly despite sharing high sequence identity (84%) and almost identical atomic structures. The difference can be pinpointed to four histidines which are spread along the protein sequence and may act together. Thus, most of the toxin B amino acids appear negligible for the assembly, raising the possibility that assembly is driven by a small network of amino acids instead of involving all of them

    A comprehensive analysis of common genetic variation in prolactin (PRL) and PRL receptor (PRLR) genes in relation to plasma prolactin levels and breast cancer risk: the Multiethnic Cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies in animals and humans clearly indicate a role for prolactin (PRL) in breast epithelial proliferation, differentiation, and tumorigenesis. Prospective epidemiological studies have also shown that women with higher circulating PRL levels have an increase in risk of breast cancer, suggesting that variability in PRL may also be important in determining a woman's risk.</p> <p>Methods</p> <p>We evaluated genetic variation in the PRL and PRL receptor (PRLR) genes as predictors of plasma PRL levels and breast cancer risk among African-American, Native Hawaiian, Japanese-American, Latina, and White women in the Multiethnic Cohort Study (MEC). We selected single nucleotide polymorphisms (SNPs) from both the public (dbSNP) and private (Celera) databases to construct high density SNP maps that included up to 20 kilobases (kb) upstream of the transcription initiation site and 10 kb downstream of the last exon of each gene, for a total coverage of 59 kb in PRL and 210 kb in PRLR. We genotyped 80 SNPs in PRL and 173 SNPs in PRLR in a multiethnic panel of 349 unaffected subjects to characterize linkage disequilibrium (LD) and haplotype patterns. We sequenced the coding regions of PRL and PRLR in 95 advanced breast cancer cases (19 of each racial/ethnic group) to uncover putative functional variation. A total of 33 and 60 haplotype "tag" SNPs (tagSNPs) that allowed for high predictability (R<sub>h</sub><sup>2 </sup>≥ 0.70) of the common haplotypes in PRL and PRLR, respectively, were then genotyped in a multiethnic breast cancer case-control study of 1,615 invasive breast cancer cases and 1,962 controls in the MEC. We also assessed the association of common genetic variation with circulating PRL levels in 362 postmenopausal controls without a history of hormone therapy use at blood draw. Because of the large number of comparisons being performed we used a relatively stringent type I error criteria (p < 0.0005) for evaluating the significance of any single association to correct for performing approximately 100 independent tests, close to the number of tagSNPs genotyped for both genes.</p> <p>Results</p> <p>We observed no significant associations between PRL and PRLR haplotypes or individual SNPs in relation to breast cancer risk. A nominally significant association was noted between prolactin levels and a tagSNP (tagSNP 44, rs2244502) in intron 1 of PRL. This SNP showed approximately a 50% increase in levels between minor allele homozygotes vs. major allele homozygotes. However, this association was not significant (p = 0.002) using our type I error criteria to correct for multiple testing, nor was this SNP associated with breast cancer risk (p = 0.58).</p> <p>Conclusion</p> <p>In this comprehensive analysis covering 59 kb of the PRL locus and 210 kb of the PRLR locus, we found no significant association between common variation in these candidate genes and breast cancer risk or plasma PRL levels. The LD characterization of PRL and PRLR in this multiethnic population provide a framework for studying these genes in relation to other disease outcomes that have been associated with PRL, as well as for larger studies of plasma PRL levels.</p

    The Zinc Dyshomeostasis Hypothesis of Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized microtubules, their binding to MAP-tau, and molecular dynamics involved in cognition. Further, our theory supports novel AD therapeutic strategies targeting intra-neuronal zinc homeostasis and microtubule dynamics to prevent neurodegeneration and cognitive decline

    Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation

    Get PDF
    Severe pulmonary arterial hypertension, whether idiopathic or secondary, is characterized by structural alterations of microscopically small pulmonary arterioles. The vascular lesions in this group of pulmonary hypertensive diseases show actively proliferating endothelial cells without evidence of apoptosis. In this article, we review pathogenetic concepts of severe pulmonary arterial hypertension and explain the term "complex vascular lesion ", commonly named "plexiform lesion", with endothelial cell dysfunction, i.e., apoptosis, proliferation, interaction with smooth muscle cells and transdifferentiation
    corecore