806 research outputs found

    Quality of life of chronic stable angina patients 4 years after coronary angioplasty or coronary artery bypass surgery

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72244/1/j.1365-2796.2001.00782.x.pd

    Maximum likelihood thresholds via graph rigidity

    Get PDF
    DIB was partially supported by a Mathematical Sciences Postdoctoral Research Fellowship from the US NSF Grant DMS-1802902. SD was partially supported by the Austrian Science Fund (FWF): P31888. AN was partially supported by the Heilbronn Institute for Mathematical Research. SJG was partially supported by US NSF Grant DMS-1564473. MS was partially supported by US NSF Grant DMS-1564480 and US NSF Grant DMS-1563234.The maximum likelihood threshold (MLT) of a graph G is the minimum number of samples to almost surely guarantee existence of the maximum likelihood estimate in the corresponding Gaussian graphical model. We give a new characterization of the MLT in terms of rigidity-theoretic properties of G and use this characterization to give new combinatorial lower bounds on the MLT of any graph. We use the new lower bounds to give high-probability guarantees on the maximum likelihood thresholds of sparse Erd{ö}s-Rényi random graphs in terms of their average density. These examples show that the new lower bounds are within a polylog factor of tight, where, on the same graph families, all known lower bounds are trivial. Based on computational experiments made possible by our methods, we conjecture that the MLT of an Erd{ö}s-Rényi random graph is equal to its generic completion rank with high probability. Using structural results on rigid graphs in low dimension, we can prove the conjecture for graphs with MLT at most 4 and describe the threshold probability for the MLT to switch from 3 to 4. We also give a geometric characterization of the MLT of a graph in terms of a new "lifting" problem for frameworks that is interesting in its own right. The lifting perspective yields a new connection between the weak MLT (where the maximum likelihood estimate exists only with positive probability) and the classical Hadwiger-Nelson problem.Peer reviewe

    The Evolution of Distorted Rotating Black Holes II: Dynamics and Analysis

    Full text link
    We have developed a numerical code to study the evolution of distorted, rotating black holes. This code is used to evolve a new family of black hole initial data sets corresponding to distorted ``Kerr'' holes with a wide range of rotation parameters, and distorted Schwarzschild black holes with odd-parity radiation. Rotating black holes with rotation parameters as high as a/m=0.87a/m=0.87 are evolved and analyzed in this paper. The evolutions are generally carried out to about t=100Mt=100M, where MM is the ADM mass. We have extracted both the even- and odd-parity gravitational waveforms, and find the quasinormal modes of the holes to be excited in all cases. We also track the apparent horizons of the black holes, and find them to be a useful tool for interpreting the numerical results. We are able to compute the masses of the black holes from the measurements of their apparent horizons, as well as the total energy radiated and find their sum to be in excellent agreement with the ADM mass.Comment: 26 pages, LaTeX with RevTeX 3.0 macros. 27 uuencoded gz-compressed postscript figures. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/ Submitted to Physical Review

    Role of Peroxisome Proliferator-Activated Receptor Gamma and Its Ligands in the Treatment of Hematological Malignancies

    Get PDF
    Peroxisome proliferator-activated receptor gamma (PPARγ) is a multifunctional transcription factor with important regulatory roles in inflammation, cellular growth, differentiation, and apoptosis. PPARγ is expressed in a variety of immune cells as well as in numerous leukemias and lymphomas. Here, we review recent studies that provide new insights into the mechanisms by which PPARγ ligands influence hematological malignant cell growth, differentiation, and survival. Understanding the diverse properties of PPARγ ligands is crucial for the development of new therapeutic approaches for hematological malignancies

    The Evolution of Distorted Rotating Black Holes III: Initial Data

    Get PDF
    In this paper we study a new family of black hole initial data sets corresponding to distorted ``Kerr'' black holes with moderate rotation parameters, and distorted Schwarzschild black holes with even- and odd-parity radiation. These data sets build on the earlier rotating black holes of Bowen and York and the distorted Brill wave plus black hole data sets. We describe the construction of this large family of rotating black holes. We present a systematic study of important properties of these data sets, such as the size and shape of their apparent horizons, and the maximum amount of radiation that can leave the system during evolution. These data sets should be a very useful starting point for studying the evolution of highly dynamical black holes and can easily be extended to 3D.Comment: 16 page

    From speculation to reality: Enhancing anticipatory ethics for emerging technologies (ATE) in practice

    Get PDF
    Various approaches have emerged over the last several decades to meet the challenges and complexities of anticipating and responding to the potential impacts of emerging technologies. Although many of the existing approaches share similarities, they each have shortfalls. This paper takes as the object of its study Anticipatory Ethics for Emerging Technologies (ATE) to technology assessment, given that it was formatted to address many of the privations characterising parallel approaches. The ATE approach, also in practice, presents certain areas for retooling, such as how it characterises levels and objects of analysis. This paper results from the work done with the TechEthos Horizon 2020 project in evaluating the ethical, legal, and social impacts of climate engineering, digital extended reality, and neurotechnologies. To meet the challenges these technology families present, this paper aims to enhance the ATE framework to encompass the variety of human processes and material forms, functions, and applications that comprise the socio-technical systems in which these technologies are embedded
    corecore