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Computing maximum likelihood thresholds using graph rigidity

Daniel Irving Bernstein∗ Sean Dewar† Steven J. Gortler‡ Anthony Nixon§

Meera Sitharam¶ Louis Theran‖

Abstract

The maximum likelihood threshold (MLT) of a graph G is the minimum number of samples
to almost surely guarantee existence of the maximum likelihood estimate in the corresponding
Gaussian graphical model. Recently a new characterization of the MLT in terms of rigidity-theoretic
properties of G was proved [3]. This characterization was then used to give new combinatorial lower
bounds on the MLT of any graph. We continue this line of research by exploiting combinatorial
rigidity results to compute the MLT precisely for several families of graphs. These include graphs
with at most 9 vertices, graphs with at most 24 edges, every graph sufficiently close to a complete
graph and graphs with bounded degrees.

Mathematics Subject Classification: 62H12, 52C25.
Key words and phrases: Gaussian graphical models, maximum likelihood threshold, combinatorial
rigidity, generic completion rank.

1 Introduction

Let G be a graph with n vertices. The Gaussian graphical model associated with G is the set of
n-variate normal distributions N(0,Σ) so that if ij is not an edge of G, then (Σ−1)ij = 0, i.e. the
corresponding random variables are conditionally independent given all of the other random variables.

A question, originally posed by Dempster [9], that has gotten a lot of attention after Uhler’s
foundational work [18] on the topic is: for a fixed graph G, how many datapoints1 are needed for
the maximum likelihood estimator of the associated Gaussian graphical model to exist almost surely?.
This minimum number of datapoints is called the maximum likelihood threshold (MLT) of G, which
we denote mlt(G).

Efficiently computing the maximum likelihood threshold of an arbitrary graph seems out of reach
to current techniques. Instead most of the literature focuses on providing combinatorial bounds on
mlt(G). The basic tool is an algebraic graph parameter called the generic completion rank (GCR) of
G, denoted gcr(G). There are various equivalent definitions of gcr(G). For our purposes, the right one
is due to Gross and Sullivant [12], who showed that gcr(G) = d+1, where d is the smallest dimension
such that a generic geometric structure made of rigid bars connected at freely rotating joints does not
support an equilibrium stress. (Full definitions are given below.)

While mlt(Kn) = n, much lower numbers can be achieved. The following basic lemma is a starting
point for an arbitrary graph.

Lemma 1.1. Let G be a graph and H a subgraph of G. Then mlt(H) ≤ mlt(G).

Uhler proved the following upper bound on the MLT.
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2 MLT AND RIGIDITY THEORY 2

Theorem 1.2 ([18]). Let G be a graph. Then mlt(G) ≤ gcr(G).

To get lower bounds, the authors, in [3], introduced a new graph parameter called the globally
rigid subgraph number of G, denoted grn∗(G). This is the largest dimension d so that G contains a
globally d-rigid subgraph on at least d+ 2 vertices. They showed that mlt(G) ≥ grn∗(G) + 2.

Rigorous experiments reported in [3] indicate that, for sparse Erdös-Rényi random graphs, in fact,
with high probability grn∗(G)+2 = gcr(G) which implies that, whp, gcr(G) = mlt(G). For sufficiently
small MLT and GCR, this relationship is deterministic.

Theorem 1.3 ([3]). If G is a graph and mlt(G) ≤ 3 or gcr(G) ≤ 4, then mlt(G) = gcr(G).

For the general case, however, Blekherman and Sinn [4] showed that a “whp” equality is the best
one can hope for.

Theorem 1.4 ([4]). For complete bipartitute graphs Km,m,

mlt(Km,m) = o(gcr(Km,m)) (as m→ ∞)

and, in particular
4 = mlt(K5,5) < gcr(K5,5) = 5.

1.1 Contributions

The conjectural picture is that, for almost all G, we have mlt(G) = gcr(G). On the other hand, the
Blekhmermann–Sinn examples show that the two quantities can be arbitrarily far apart. Against this,
our Theorem 1.3 says that for very small GCR and MLT, the two quantities always coincide.

It is then natural to ask how large or how sparse a graph G needs to be in order to have mlt(G) <
gcr(G). That is the topic we take up here.

Our first results imply that the Blekherman–Sinn example of K5,5 is the smallest possible graph
where the MLT and GCR do not coincide. No graph with fewer vertices can have this property.

Theorem 1.5. Let G a graph on at most 9 vertices. Then mlt(G) = gcr(G).

Neither can a graph with fewer edges.

Theorem 1.6. Let G be a graph with at most 24 edges. Then mlt(G) = gcr(G).

Turning to the general case, we prove that any graph which is nearly complete also must have
equal MLT and GCR.

Theorem 1.7. Let G be a graph whose complement has at most 5 edges. Then mlt(G) = gcr(G) ≥
n− 2.

So must a graph with sufficiently small minimum and maximum degrees.

Theorem 1.8. Let G be a connected graph with minimum degree at most 4 and maximum degree at
most 5. Then mlt(G) = gcr(G) ≤ 5.

We believe that Theorem 1.7 might not be best possible, in the sense that the same statement may
hold with a number larger than 5. At the other extreme, K5,5 shows that removing 20 edges from K10

does give a graph with different MLT and GCR.
Theorem 1.5 is proved in Section 3, with the more technical parts of the proof deferred until Section

6, and Theorem 1.6 is proved in Section 4. Theorems 1.7 and 1.8 are proved in Section 5. First we
give some preliminary results from graph rigidity and recap some necessary theory from [3].

2 MLT and rigidity theory

In this section we introduce the necessary background from rigidity theory, including results on equi-
librium stresses and MLT. Figure 1 illustrates the following definitions for d = 2.



2 MLT AND RIGIDITY THEORY 3

2.1 Rigid graphs

Definition 2.1. Let d ∈ N be a dimension. A framework in R
d is an ordered pair (G, p) where G is

a graph with n vertices {1, . . . , n} and p = (p(1), . . . , p(n)) is a configuration of n points in R
d. Two

frameworks (G, p) and (G, q) are equivalent if

‖p(j) − p(i)‖ = ‖q(j) − q(i)‖ for all edges ij of G

and congruent if p and q are related by a Euclidean isometry, i.e. if there exists a Euclidean isometry
T : Rd → R

d such that q(i) = T (p(i)) for i = 1, . . . , n. (G, p) is globally rigid in dimension d if all
equivalent d-dimensional frameworks are congruent. If this happens only for some neighborhood U
around p, i.e. if (G, p) and (G, q) are congruent whenever q ∈ U and (G, q) and (G, p) are equivalent,
then (G, p) is said to be rigid in dimension d.

↔ ↔

Figure 1: The framework on the left fails to be rigid because there exist arbitrarily close frameworks
that are equivalent but not congruent. The frameworks in the middle are rigid but fail to be globally
rigid since they are equivalent but not congruent. Finally, the framework on the right is globally rigid
and therefore also rigid.

(Global) rigidity of a specific framework is difficult to check [1, 15], but for each dimension d, every
graph has a generic behavior. Following [18, 12], we use the following notion of generic. Let p be a
configuration of n points in R

d. We say that p is generic if the coordinates of p do not satisfy any
polynomial with rational coefficients. Fundamentally, in the generic case, we can treat rigidity and
global rigidity as properties of a graph rather than as properties of a framework. Indeed by [2, 10],
if we let d be a fixed dimension and G a graph, then either every generic d-dimensional framework
(G, p) is (globally) rigid or every generic d-dimensional framework (G, p) is not (globally) rigid. Hence
we call G (globally) d-rigid if its generic d-dimensional frameworks are (globally) rigid.

Let G be a graph with n vertices and m edges. The rigidity matrix R(G, p) of a d-dimensional
framework (G, p) is the m× dn matrix whose rows are indexed by the edges of G, columns indexed by
the coordinates of p(1), . . . , p(n), where the entry corresponding to edge e and p(v)i is p(v)i − p(u)i
if e = vu, and 0 if v is not incident to e. We call G d-independent if the rows of R(G, p) are linearly
independent for a (or any) generic framework (G, p). In Figure 1, the graphs underlying the frameworks
in the middle and on the left are 2-independent, whereas the graph of the framework on the right is
not.

Given vertices i and j of a graph G, we write i ∼ j to indicate that G has an edge between i and
j. Let G be a graph with n vertices. Let (G, p) be a framework. An equilibrium stress ω of (G, p) is
an assignment of weights ωij to the edges of G so that, for all vertices i

∑

j∼i

ωij(p(j)− p(i)) = 0 (sum over neighbors of i).

The equilibrium stress matrix associated to an equilibrium stress ω is the matrix Ω obtained by setting
Ωji = Ωij = −ωij for all edges ij of G, Ωii =

∑

j ωij and all other entries zero. The rank and signature
of ω are defined to be the rank and signature of Ω, and ω is said to be PSD if Ω is positive semi-definite.

Building on [18, 12], the following key result was proved in [3] which reformulated the MLT of a
graph in terms of equilibrium stresses.

Theorem 2.2. Let G be a graph with n vertices. Then the MLT of G is d+ 1 if and only if d is the
smallest dimension in which no generic d-dimensional framework supports non-zero PSD equilibrium
stress.

We will make repeated use of the following theorem which will allow us to determine the MLT
when G is globally d-rigid.
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Theorem 2.3 ([8]). Let G be a graph with n ≥ d+2 vertices and d a dimension. If G globally d-rigid,
then there is a generic framework (G, p) with a PSD equilibrium stress of rank n− d− 1.

The theorem will often be applied through the following corollary. G is a d-circuit if it is not
d-independent, but every proper subgraph is.

Corollary 2.4 ([3]). Let G be a d-circuit. Then gcr(G) = d+2. Further, if G is globally d-rigid then
mlt(G) = d+ 2.

2.2 Graph operations

A (d-dimensional) 0-extension of a graph G is the graph obtained from G by adding a new vertex of
degree d. A (d-dimensional) 1-extension of G is the graph obtained from G by removing an edge xy,
and adding a new vertex adjacent to x, y and d− 1 other vertices. The inverse of these operations are
called (d-dimensional) 0- and 1-reductions.

The following lemma is relatively straightforward.

Lemma 2.5 ([19, Lemma 11.1.1, Theorem 11.1.7]). Let G be d-independent and suppose that G′ is
obtained from G by a 0-extension or a 1-extension. Then G′ is d-independent.

More difficult is the fact that 1-extensions preserve global d-rigidity [5]. In fact one can preserve
the existence of a PSD equilibrium stress of full rank [6, Section 9]. That proof can be adapted to
obtain the following lemma which we will need. Details are provided in Appendix A.

Lemma 2.6. Let G = (V,E) a d-rigid graph that has a generic realization (G, p) in R
d with a PSD

equilibrium stress ω with rank |V | − d − 2. Suppose that G′ = (V ′, E′) is a d-rigid d-circuit obtained
from G by a 1-extension. Then there exists a generic framework (G′, p′) with a PSD equilibrium stress
of rank at least |V ′| − d− 2.

Definition 2.7. A graph G is a k-sum of two induced subgraphs G1 and G2 each with at least k + 1
vertices if G is the union of G1 and G2 and G1 ∩G2 is isomorphic to Kk.

Given a graph G with edge ij, we let G − ij denote the graph obtained from G by deleting the
edge ij.

Lemma 2.8 ([3]). Let 1 ≤ k ≤ d and G be a k-sum of subgraphs G1 and G2 and ij and edge
of G1 ∩ G2. Suppose that there are generic d-dimensional frameworks (G1, p

1) and (G2, p
2) that,

respectively, support non-zero PSD equilibrium stresses ω1 and ω2, such that ωk
ij 6= 0 for k = 1, 2. Let

G′ = G− ij. Then there is a generic d-dimensional framework (G′, p) that supports a non-zero PSD
equilibrium stress.

We will also use the following lemma which was implicit in [3].

Lemma 2.9. Let G′ be the cone of G. Then mlt(G′) = mlt(G) + 1.

Proof. This is an immediate corollary of [7, Lemma 4.9] and Theorem 2.2.

Note that iteratively coning K5,5 (applying the lemma) gives us a family of non-bipartite graphs
G for which mlt(G) 6= gcr(G). We also note, but will not need, the fact that adding a single edge to
a graph can alter the MLT by at most 1.

Proposition 2.10. Let e be a non-edge of a graph G = (V,E). Then mlt(G) ≤ mlt(G + e) ≤
mlt(G) + 1.

Proof. Let e = vw and define the set of non-edges F := {vu : u ∈ V, v 6∼ u}. By Lemma 2.9,
mlt(G+ F ) = mlt(G− v) + 1. By Lemma 1.1 we see that

mlt(G) ≤ mlt(G+ e) ≤ mlt(G+ F ) = mlt(G− v) + 1 ≤ mlt(G) + 1,

which concludes the proof.
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3 Graphs with few vertices

We will demonstrate that if G has sufficiently few vertices then mlt(G) = gcr(G). This requires a
number of technical results which we now derive. The first is computational.

Lemma 3.1. Every 6-regular graph on 9 vertices is globally 4-rigid.

Proof. The complement of a 6-regular graph on 9 vertices is 2-regular and there are exactly four
isomorphism classes of 2-regular graphs on 9-vertices. In particular, these are the 9-cycle, the disjoint
union of a 6-cycle and a 3-cycle, the disjoint union of a 5-cycle and a 4-cycle, and the disjoint union
of three 3-cycles.

In all four graphs let the vertex set be {v1, v2, . . . , v9}. We define G1 by taking the edge set of K9

and deleting the 9-cycle with edges v1v2, v2v3, . . . , v8v9, v9v1. We define G2 by taking the edge set of K9

and deleting the 6-cycle with edges v1v2, v2v3, . . . , v5v6, v6v1 and the 3-cycle with edges v7v8, v8v9, v9v7.
We define G3 by taking the edge set of K9 and deleting the 5-cycle with edges v1v2, v2v3, . . . , v4v5, v5v1
and the 4-cycle with edges v6v7, v7v8, v8v9, v9v6. Finally, we define G4 by taking the edge set of K9 and
deleting the 3-cycle with edges v1v2, v2v3, v3v1, the 3-cycle with edges v4v5, v5v6, v6v4 and the 3-cycle
with edges v7v8, v8v9, v9v7.

By [5, Theorem 1.3], it suffices to show that each Gi has an infinitesimally rigid realization with
an equilibrium stress of rank 4. For 1 ≤ i ≤ 4 we define the framework (Gi, p) in R

4 by putting
p(v1) = (0, 0, 0, 0), p(v2) = (0, 0, 0, 1), p(v3) = (0, 0, 4,−1), p(v4) = (0, 2, 3, 5), p(v5) = (1,−1, 0,−2),
p(v6) = (1, 3, 7, 0), p(v7) = (2,−4,−1, 1), p(v8) = (−9, 0, 2, 11) and p(v9) = (−3, 3, 1, 6). Given these
realizations it is simple for the reader to verify that the rigidity matrix has rank 4n − 10 = 26, that
the cokernel of the rigidity matrix is 1-dimensional and that the stress matrix corresponding to any
non-zero equilibrium stress of (Gi, p) has rank 4.

We will also make use of the following theorem of Jordán. Given a graph G = (V,E) and a subset
X of vertices, iG(X) (or i(X) when the graph G is clear) denotes the number of edges in the subgraph
induced by X. G is (d,

(

d+1
2

)

)-sparse if i(X) ≤ d|X| −
(

d+1
2

)

for all X ⊂ V with |X| ≥ d. G is

(d,
(

d+1
2

)

)-tight if it is (d,
(

d+1
2

)

)-sparse and |E| = d|V | −
(

d+1
2

)

. A graph is redundantly d-rigid if it is
d-rigid, and remains so after removing any edge.

Theorem 3.2 ([14, Theorems 2.3 and 3.2]). Let d ≥ 1, let k ∈ {3, 4} and let G be a graph on d + k
vertices. Then G is d-rigid if and only if it contains a spanning (d,

(

d+1
2

)

)-tight subgraph. Moreover G
is globally d-rigid if and only if G is redundantly d-rigid and (d+ 1)-connected.

The following lemma was implicit in [14]. Let Hd denote the graph obtained by gluing two copies
of Kd+2 along a common Kd subgraph and removing a common edge – see Figure 2 for an illustration
when d = 3.

Figure 2: The graph H3.

Lemma 3.3 ([14]). Hd is the unique graph on at most d + 4 vertices that is a d-rigid d-circuit and
not (d+ 1)-connected.

For disjoint vertex sets A,B of a graph G, we will denote the induced subgraph on the vertex set
A by G[A], the non-edges of G by Ec, the non-edges of G induced on the set A by Ec[A], and the
set of non-edges of G with one end in A and the other in B by Ec(A,B). The minimum degree of a
graph G will be denoted δ(G). The set of neighbors of a vertex v of G will be denoted NG(v). Given
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a set V of vertices, K(V ) denotes the complete graph on vertex set V . Given a subset S of edges or
vertices of G, we let G−S denote the graph obtained by removing S. Given graphs G and H, G+H
denotes the graph whose vertex and edge sets are the unions of the vertex and edge sets of G and H.

Lemma 3.4. Suppose G is a d-rigid d-circuit with d+5 vertices and minimum degree d+1. Then G
has a d-dimensional generic realization with a PSD equilibrium stress of rank at least 3.

Proof. First supposeG is a (d+1)-connected d-rigid d-circuit with a vertex v of degree d+1. Then G−v
is d-rigid. Since G is (d+ 1)-connected and redundantly d-rigid, the graph G′ = G− v0 +K(NG(v0))
must also be (d + 1)-connected and redundantly d-rigid. By Theorem 3.2, G′ is globally d-rigid, and
hence by [16, Lemma 4.1], G is globally d-rigid. The result follows from Theorem 2.3.

Now suppose G is not (d + 1)-connected. Since G is d-rigid, there exists a separating set C ⊂ V
of size d. As δ(G) = d + 1, G − C will have exactly two connected components G[A], G[B] where
A = {a1, a2} and B = {b1, b2, b3}. The complement Gc of G has exactly 9 edges. Since Kd+2 is not
a subgraph of G, G[C] is not complete. Since |Ec(A,B)| = 6 it follows that |Ec[B ∪ C]| = 3 and
|Ec[C]| ∈ {1, 2, 3}.

If |Ec[C]| = 1 and G[B] ∼= K3 then, without loss of generality, b1, b2 have degree d+1 in G and are
incident to edges of EC(B,C). We can apply a 1-reduction at b1 and add the missing edge incident
to b2 to result in a smaller d-circuit. A similar argument applies if G[B] has 2 edges. In both cases
the resulting d-circuit has d + 4 vertices and is not (d + 1)-connected. Hence it is Hd. This case is
completed by Lemma 2.6.

Now assume |Ec[C]| ≥ 2. If three non-edges meet at a vertex c ∈ C, then G[B∪C−c] is isomorphic
to Kd+2, contradicting that G is a d-circuit. Hence there are not, and there exists a 1-reduction at
a1 followed by a 0-reduction at a2 resulting in the graph Kd+3 − {e, f} where e and f do not share a
vertex. The result now follows from Theorem 3.2, Theorem 2.3, and Lemma 2.6.

The proof of the following lemma is long and technical, so we defer it to the end of the paper (see
Section 6).

Lemma 3.5. Suppose G is a 3-rigid 3-circuit with 9 vertices. Then mlt(G) ≥ 5.

Lemma 3.6. Let G be a d-circuit on at most d+ 4 vertices. Then mlt(G) ≥ d+ 2.

Proof. By Lemma 3.3, if G is not (d+1)-connected, then G = Hd. Since Kd+2 has a PSD equilibrium
stress it follows from Lemma 2.8 that Hd has a PSD equilibrium stress and hence Theorem 2.2 implies
that mlt(Hd) ≥ d+2. If G is (d+1)-connected, then G is globally rigid by Theorem 3.2 and Corollary
2.4 gives the result.

Proof of Theorem 1.5. For any graph H, if we choose d so that gcr(H) = d + 2 then H is not d-
independent and therefore contains a d-circuit. In light of Lemma 1.1, it therefore suffices to prove
any d-circuit G with 9 or fewer vertices has mlt(G) ≥ d + 2. By Theorem 1.3, we may assume d ≥ 3
and by Lemma 3.6, we may assume n ≥ d+ 5. Thus either d = 3 and n ∈ {8, 9}, or d = 4 and n = 9.

Assume that G is d-rigid, i.e. that it has dn−
(

d+1
2

)

+1 edges. If d = 3 and n = 9 then mlt(G) ≥ d+2
by Lemma 3.5. If G has a vertex of degree d + 1 and d = 3 and n = 8, or d = 4 and n = 9, then
mlt(G) ≥ d + 2 by Lemma 3.4 and Theorem 2.2. If G does not have a vertex of degree d + 1, then
d = 4, n = 9, and G is 6-regular. In this case, Lemma 3.1 implies G is globally rigid and Corollary 2.4
gives the result.

Thus we may assume that G is not d-rigid. Since n ≤ 9 and d ≥ 3, [11, Theorem 1] implies that
G is obtained from two rigid d-circuits by gluing them together over a common complete subgraph
on (d − 1) or (d − 2) vertices and deleting exactly one edge from the intersection. From above, the
two rigid d-circuits that we glue are globally d-rigid. Theorem 2.3 implies that there is a generic
framework for each of these with a non-zero PSD equilibrium stress. We may then apply Lemma 2.8
and Theorem 2.2 to conclude that mlt(G) = d+ 2.
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4 Graphs with few edges

The purpose of this section is to prove Theorem 1.6. We will use the following results in the proof.

Theorem 4.1 (Jackson and Jordán [13]). Let G = (V,E) be a graph and suppose i(X) ≤ 1
2 (5|X| − 7)

for all X ⊂ V with |X| ≥ 2 then G is 3-independent.

The next lemma generalises [11, Lemma 12] but a careful reading of their proof shows that it works
in the generality we state.

Lemma 4.2. Let G be the 2-sum of two 3-rigid 3-circuits G1, G2. If G′ is formed from G by a
1-extension, then G′ is either minimally 3-rigid, or G′ is the 2-sum of two 3-rigid 3-circuits.

Lemma 4.3 ([19, Lemma 11.1.9]). Let G1, G2 be subgraphs of a graph G and suppose that G = G1∪G2.

(a) If G1 ∩G2 is 3-rigid and G1,G2 are 3-independent then G is 3-independent.

(b) If |V (G1) ∩ V (G2)| ≤ 2, u ∈ V (G1) \ V (G2) and v2 ∈ V (G2) \ V (G1) then rankR(G+ uv, p) =
rankR(G, p) + 1 for any generic realization p in R

3.

In the proof of Theorem 1.6 we will also use repeatedly the following counting argument. First we
need some definitions. Let G = (V,E) be a graph. Take X,Y ⊂ V . We will say that X is 3-critical if
|X| ≥ 3 and i(X) = 3|X| − 6. Also, we will use dG(X,Y ) to denote the number of edges in G of the
form xy where x ∈ X \ Y and y ∈ Y \X (again we will simply use d(X,Y ) if the graph is clear from
the context).

Remark 4.4. Let G = (V,E) be (3, 6)-sparse and suppose that X,Y ⊂ V are 3-critical. Then

3|X| − 6 + 3|Y | − 6 = i(X) + i(Y ) = i(X ∪ Y ) + i(X ∩ Y )− d(X,Y )

≤ 3|X ∪ Y | − 6 + i(X ∩ Y )− d(X,Y ).

If |X ∩ Y | = 2 and G[X ∪ Y ] has no edges or |X ∩ Y | ≥ 3 then i(X ∩ Y ) = 3|X ∩ Y | − 6 and hence
equality holds throughout and d(X,Y ) = 0. If |X ∩ Y | = 2 and G[X ∩ Y ] ∼= K2 then i(X ∩ Y ) = 1,
d(X,Y ) ≤ 1 and i(X ∪ Y ) = 3|X ∪ Y | − 6− (1− d(X,Y )). Lastly if |X ∩ Y | = 1 then i(X ∩ Y ) = 0,
d(X,Y ) ≤ 3 and i(X ∪ Y ) = 3|X ∪ Y | − 6− (3− d(X,Y )).

Lemma 4.5. Let G be a 3-connected graph formed from two disjoint 3-independent graphs G1 and
G2 by adding at most 4 edges between them. Then G is 3-independent.

Proof. Let F be the set of at most 4 edges between G1 and G2. Suppose that F is an independent
(in the graph theoretical sense) set in G. Then the result follows from an elementary body-bar type
argument (see, for example, [17]). Since G is 3-connected in each remaining possibility there exists an
edge e ∈ F such that G− e has a 2-vertex-separation {x, y} where x, y ∈ G1 (by relabelling G1, G2 if
necessary) and x, y are incident to edges of F . Since G1 and G2∪{x, y} are 3-independent (by Lemma
2.5) we may now use Lemma 4.3(b) to see that G is 3-independent.

Proof of Theorem 1.6. Choose any G = (V,E) with |E| ≤ 24. If |V | ≤ 9 then mlt(G) = gcr(G) by
Theorem 1.5, so we may assume that |V | ≥ 10. Similarly, if gcr(G) ≤ 4 then mlt(G) = gcr(G) by
Theorem 1.3, so we may suppose that gcr(G) ≥ 5. Fix d = gcr(G)− 2 ≥ 3. Since G is d-dependent it
contains a d-circuit H and since gcr(G) = d + 2 we have gcr(H) = d + 2. Now mlt(H) ≤ mlt(G) ≤
gcr(G) = d + 2 (by Theorem 1.2). Hence it will suffice for us to prove that if G is a d-circuit then
mlt(G) = gcr(G).

As G is a d-circuit it is easy to deduce from Lemma 2.5 that δ(G) ≥ d + 1. Since |V | ≥ 10, the
handshaking lemma implies that

24 ≥ |E| ≥
d+ 1

2
|V | ≥ 5d+ 5. (1)

Hence d = 3 and now Equation (1) implies 24 ≥ 2|V | with equality if and only if G is 4-regular. If
δ(G) ≥ 5 then |E| ≥ 5

2 |V | and, since |V | ≥ 10, this contradicts the hypothesis that |E| ≤ 24. Hence
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δ(G) = 4. If ∆(G) = |V | − 1 then G has a cone vertex u, and gcr(G − u) = gcr(G) − 1 = 4 (since
coning takes a d-independent graph to a (d+ 1)-independent graph [20]). By Theorem 1.3, it follows
that mlt(G− u) = gcr(G− u) = 4. By Lemma 2.9, we have

mlt(G) = mlt(G− u) + 1 = gcr(G− u) + 1 = gcr(G).

Hence we may suppose that ∆(G) ≤ |V | − 2. If ∆(G) ≤ 5 then mlt(G) = gcr(G) by Theorem 1.8,
hence we may suppose that ∆(G) ≥ 6 and so G is not 4-regular. Thus |V | ∈ {10, 11}.

If G is not 3-connected (as d-circuits must be 2-connected) then it is the 2-sum of two 3-circuits
G1, G2, each with at most 7 vertices. By Theorem 1.5 and Corollary 2.4, mlt(G1) = mlt(G2) = 5.
Hence by Theorem 2.2 and Lemma 2.8, mlt(G) ≥ 5. Since gcr(G) = 5, mlt(G) = 5 by Theorem 1.3.
So we may assume that G is 3-connected.

Case 1: |V | = 11. For X ⊂ V with |X| ≥ 2, define the value f(X) := 1
2(5|X| − 7). For X ⊂ V

with 2 ≤ |X| ≤ 4 we have iG(X) ≤
(|X|

2

)

≤ f(X), and iG(V ) ≤ 24 = f(V ). Since G is a 3-circuit, it
does not contain a copy of K5, hence iG(X) ≤ 9 ≤ f(X) whenever |X| = 5. When removing k ≤ 4
vertices, we must remove at least

∑k
i=1 4 − (i − 1) edges (the minimum is achieved by removing a

degree 4 vertex and then removing all but one of its neighbours), hence iG(X) ≤ f(X) if |X| ≥ 7.
If |X| = 6, then iG(X) ≤ 3|X| − 6 = 12 and f(X) = 1

2(5|X| − 7) = 23
2 . Hence iG(X) > f(X) if

and only if G[X] is minimally 3-rigid. Suppose that this is the case. As G is a 3-circuit, G[V \X] is
3-independent. Let t denote the number of edges between X and V \X. Then, since δ(G) ≥ 4 and
iG(V \X) ≤ 12− t, we have

20 = 4|V \X| ≤
∑

v∈V \X

dG(v) = 2iG(V \X) + t ≤ 2(12 − t) + t = 24− t,

and hence t ≤ 4. Now G is 3-independent by Lemma 4.5, a contradiction. Hence iG(X) ≤ f(X) if
|X| = 6 and so iG(X) ≤ f(X) for all X ⊂ V with |X| ≥ 2. Thus G is 3-independent by Theorem 4.1,
a contradiction.

Case 2: |V | = 10. As δ(G) = 4 and ∆(G) ≥ 6, |E| ≥ 21. If |E| = 21 then iG(X) ≤ f(X) for all
X ⊂ V . This follows similarly to the above. In particular it is clear for all X ⊂ V with 2 ≤ |X| ≤ 4,
it holds for |X| = 5 since K5 is a 3-circuit, and for all 6 ≤ |X| ≤ 10 it follows from repeated removal
of minimum degree vertices. Hence |E| ∈ {22, 23, 24}. Since |E| ≤ 24 < 3|V | − 5, G is 3-flexible.
Furthermore, since every proper subgraph of G is 3-independent, G is (3, 6)-sparse. Let u be a degree
4 vertex.

Claim. There exists a pair x, y ∈ N(u) such that H := G− u+ xy is (3, 6)-sparse.

Proof. Let N(u) = {x, y, z, w}. Since G does not contain a subgraph isomorphic to K5, without loss
of generality we may suppose that xy /∈ E. Now, by [13, Lemma 3.1], G− v + xy is not (3, 6)-sparse
if and only if there exists a 3-critical set X ⊂ V − u with x, y ∈ X. Suppose X is the maximal such
set with respect to inclusion. If N(v) ⊂ X then we contradict the (3, 6)-sparsity of G so without loss
of generality we may assume w /∈ X.

Consider the pair {y,w} ⊂ N(v). If there exists a 3-critical set W ⊂ V −u with y,w ∈W then by
Remark 4.4 either i(X ∩W ) ≤ 3|X ∩W | − 6, or |X ∩W | = 1, or |X ∩W | = 2 and G[X ∩W | ∼= K2.
In the first case i(X ∪W ) = 3|X ∪W | − 6 contradicting the maximality of X. In the second case we
have V = X ∪W ∪ {u} so we may suppose z ∈ X. We now note that both G[X ∪ {u}] and G[W ] are
(3, 6)-tight, and hence minimally 3-rigid as G is a 3-circuit. Hence the graph G′ formed from gluing
G[X∪{u}] and G[W ∪{u}] at the edge uy is 3-independent with 1 degree of freedom by Lemma 4.3(a).
If d(X,W ) = 0, then G = G′, contradicting the hypothesis that G is a 3-circuit. If d(X,W ) ≥ 1 then,
by Lemma 4.3(b), G is 3-rigid, contradicting the fact that G is 3-flexible. Hence we have |X ∩W | = 2
and G[X ∩W | ∼= K2 (note that x /∈ W ). If V = X ∪W ∪ u then without loss of generality we may
assume z ∈ X. Now, since d(X,W ) = 0, the 3-independent graph G − uw has a 2-vertex-separation
X ∩W := {y, y′} where yy′ ∈ E. It follows from Lemma 4.3(b) that G is 3-rigid, a contradiction. So
there exists a vertex in V \ (X ∪W ∪ u). Since |E| ≤ 24 and δ(G) = 4, this vertex must be z and
d(z) = 4. Note that xw /∈ E and G− {u, z} is 3-independent, so G− {u, z}+ xw is 3-independent by
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Lemma 4.3(b). Hence G − u + xw is 3-independent by Lemma 2.5 giving the claim. Hence we may
assume that yw ∈ E and by symmetry that xw ∈ E.

Suppose that z ∈ X. If zw ∈ E then we contradict the maximality of X, so we may suppose
zw /∈ E. Then there exists a 3-critical subset Y ⊂ V − u with w, z ∈ Y . By the maximality of
X we have |X ∩ Y | ≤ 2. If |X ∩ Y | = 1 then, since |E| ≤ 24, {w, z} is a 2-vertex-separation of G
contradicting the fact that G is 3-connected. So |X ∩ Y | = 2 but then we contradict the hypothesis
that |E| ≤ 24.

Finally, suppose that z /∈ X. Then as above we deduce that xz, yz ∈ E. Suppose that wz /∈ E and
there exists a 3-critical set Z ⊂ V − u with w, z ∈ Z. If x or y is contained in Z then we may relabel
and apply the above argument to obtain a contradiction. Hence we may assume x, y /∈ Z. Since
|V | = 10 and X is maximal we have 1 ≤ |X ∩ Z| ≤ 2. Now Remark 4.4 implies that d(X,Z) ≤ 3 but
we have already shown that xw, xz, yw, yz ∈ E. This is a contradiction and so we must have wz ∈ E.
Now 5 ≤ |X| ≤ 7. If |X| ∈ {5, 6} then since G[X ∪ {u,w, z}] is (3, 6)-tight and |E| ≤ 24 there must
exist a vertex in V \ (X ∪{u,w, z}) of degree at most 3, contradicting the fact that δ(G) = 4. Finally,
if |X| = 7 then, since |E| ≤ 24, {x, y} is a 2-vertex-separation of G. This contradiction completes the
proof of the claim.

If H is 3-independent then G is also 3-independent as G is formed from H by a 1-extension, hence
H is 3-dependent. Thus there exists a set X ⊂ V −u such that H[X] is a 3-circuit. If {x, y} 6⊂ X then
H[X] ⊂ G, contradicting that G is a 3-circuit, hence x, y ∈ X. As H[X] is a (3, 6)-sparse 3-circuit with
at most 9 vertices, H[X] is the 2-sum of two 3-circuits H1,H2 where |V (H1)| = 5 and |V (H2)| ∈ {5, 6}.
By Theorem 3.2 H1 and H2 are 3-rigid. By Lemma 4.2, either G is the 2-sum of two 3-circuits G1, G2

(and hence not 3-connected), or G is 3-rigid. However, both cases contradict our assumptions.

5 Many edges and bounded degrees

In this short section we will demonstrate that if G is sufficiently close to being complete, or has
sufficiently small vertex degrees then mlt(G) = gcr(G).

Proof of Theorem 1.7. Let G be a graph on n vertices and fix d = gcr(G) − 2. If n ≤ 4 the theorem
is trivial (for example, from Theorem 1.3) so suppose n ≥ 5. The graph G has at least

(

n
2

)

− 5 edges.
We have

(

n

2

)

− 5 > (n− 4)n−

(

n− 3

2

)

.

Since any (n− 4)-independent graph is (n− 4,
(

n−3
2

)

)-sparse, G is (n− 4)-dependent and therefore G
contains an (n− 4)-circuit and d ≥ n− 4. It follows from the definition of the GCR that G contains a
d-circuit on at most d+ 4 vertices. Lemmas 1.1 and 3.6 and Theorem 1.2 now imply mlt(G) = d+ 2,
completing the proof.

The next proof requires the following result of Jackson and Jordán.

Theorem 5.1 ([13]). Let G be a connected graph with minimum degree at most d+ 1 and maximum
degree at most d+ 2. Then G is d-independent if and only if i(X) ≤ d|X| −

(

d+1
2

)

for any vertex set
X ⊂ V with |X| ≥ d+ 2.

Proof of Theorem 1.8. The degree hypothesis implies that any set X ⊂ V satisfies i(X) ≤ 1
2(5|X|−1).

Hence i(X) ≤ 4|X| − 10 for all |X| ≥ 6 and i(X) ≤ 3|X| − 6 for all |X| ≥ 102. Applying these two
observations with Theorem 5.1 implies that we have gcr(G) ≤ 5, with equality if and only if G contains
a 3-circuit on at most 9 vertices (since no 4-circuit exists on at most 5 vertices). If gcr(G) ≤ 4 then
Theorem 1.3 gives the result. Hence we may suppose gcr(G) = 5 and let H be a 3-circuit contained
in G with |V (H)| ≤ 9. The result follows from applying Theorem 1.5 to H.

2The cases when |X| = 6 and respectively |X| = 10 follow since i(X) is an integer.



6 COMPLETING THE PROOF OF THEOREM 1.5 10

6 Completing the proof of Theorem 1.5

It remains to prove Lemma 3.5. We first deal with the case when G is 4-connected. In what follows,
we make repeated implicit use of the fact that every vertex in a d-circuit has degree at least d+ 1.

Lemma 6.1. Let G be a 4-connected 3-rigid 3-circuit on 9 vertices. Then G has a generic realization
in R

3 with a PSD equilibrium stress.

Proof. A counting argument shows that G has a vertex v0 of degree 4. Since G is a 3-circuit, there
exist distinct vertices x, y adjacent to v0 such that xy /∈ E. Let G′ be the result of the 1-reduction at
v0 that adds xy. Then G′ contains a 3-circuit H.

If |V (H)| = 8 then H = G′. The connectivity of H is at least 3 (as otherwise G would not be
4-connected), hence by [11] H is 3-rigid. The result now follows from Lemmas 2.6 and 3.4.

If |V (H)| = 7 then G′ is formed from H by a 0-extension that adds a vertex v1. Since G is a
4-connected 3-circuit, v0 and v1 must be adjacent in G, and v1 /∈ {x, y}. We now note that G can be
formed from H by two 1-extensions; the first will remove the edge xy and connect the vertex v0 to
NG(v0) − v1 + u for some vertex u ∈ V (H), and the second will remove the edge uv0 and attach v1
to all its neighbours in G. Since H3 has a 3-dimensional generic realization with a PSD equilibrium
stress of rank 2 and any globally 3-rigid graph has a PSD equilibrium stress of rank 3 (Theorem 2.3),
the result now follows from Lemmas 2.6 and 3.3 and Theorem 3.2.

If |V (H)| = 6 then H is globally 3-rigid by Theorem 3.2. Since |E(G′)| = 19 and |E(H)| = 13,
G′ has 6 edges not in H. Given a, b are the two vertices in G′ − V (H) with a having equal or higher
degree than b in G′, one of the two possibilities must hold: (i) both a and b have degree 3 in G′, or
(ii) a has degree 4 in G′, b has degree 3 in G′, and there exists an edge between a and b. In both cases
we have that v0b ∈ E, and in (i) we have v0a ∈ E also. In case (i) we must have distinct vertices
s, t ∈ V \ {a, b, v0, x, y} adjacent to a and b respectively as otherwise G would not be 4-connected.
Hence in case (i) we can obtain G from H by three 1-extensions; the first to add v0 attached to x, y, s, t
and the next to split two of the edges v0s and v0t and add the vertices a, b. If case (ii) holds then
G can be formed from H by a 0-extension to add b adjacent to its neighbours plus a vertex w in the
neighbourhood of a in G, a 1-extension at wb to add a, and a 1-extension at xy to add v0. In either
case, the result will hold by Lemma 2.6 and Theorem 2.3.

Finally, suppose |V (H)| = 5, i.e. G′ has a 5-clique. Let a, b, c be the three vertices in G′ − V (H).
We will show that there exists a 1-reduction of G at a, b or c resulting in a graph that does not contain
a 5-clique, hence reducing the problem to one of the previous cases. We first note that v0 can be
adjacent to at most two of a, b, c as x, y ∈ V (H). If any of a, b, c are adjacent to four vertices in H
then G must contain either K6−{e, f} (e, f independent) or K5 which contradicts that G is a 3-circuit.
The 4-connectivity of G implies that each of a, b, c has a neighbour in H. If a has exactly 1 neighbour
in H then a is adjacent to v0 and has degree 4. By a quick case analysis we can see that there is a
1-reduction at a (in G) creating a graph with no 5-clique. Hence we may assume each of a, b, c has
either 2 or 3 neighbours in H. If all three have 3 neighbours in H then G would have a vertex of
degree 3, hence we may assume a has only two neighbours in H. If a, b, c all have two neighbours in
H then we may assume that av0 /∈ E and hence a has degree 4. As above, we can apply a 1-reduction
at a (in G) to create a graph with no 5-clique. Hence we may assume that b has 3 neighbours in H. If
c has 2 neighbours in H, then a quick case analysis shows that one of a, b, c has degree 4 in G and we
again reduce that vertex instead of v0. Lastly if c has 3 neighbours in H, then a certainly has degree
4 in G (otherwise G′ would have too many edges) and we finish in the same manner.

We lastly deal with the case when G is not 4-connected. It will be convenient to define a node of
G to be a vertex of degree 4 and to use N to denote the set of nodes of G. We also define a deleted
k-sum of two graphs G1, G2 to be the graph obtained by gluing G1 and G2 along a common k-clique,
then removing one edge from this common clique.

Lemma 6.2. Let G be a 3-rigid 3-circuit on 9 vertices with a separating set C = {c1, c2, c3}. Then G
has a generic realization in R

3 with a PSD equilibrium stress.
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Proof. Let A,B ⊂ V be chosen such that |A| ≤ |B|, A∪B∪C = V , A∩B = A∩C = B ∩C = ∅, and
there exist no edge joining A and B. As G is a 3-circuit on 9 vertices, either |A| = |B| = 3, or |A| = 2
and |B| = 4. Note that C cannot be a clique, as this would imply either G[A ∪ C] or G[B ∪ C] is a
3-circuit.

Suppose that G[B] is disconnected. Then |B| = 4 and so |A| = 2. Since 3-circuits have minimum
degree at least 4, the only 3-circuit that satisfies the above conditions is the graph described in Figure
3(a). This graph can be formed by the union of three copies of K5 glued at three vertices {c1, c2, c3}
with two edges c1c2, c1c3 removed. It can be shown that G has a 3-dimensional generic realization
with a PSD equilibrium stress3. Hence we may suppose both G[A] and G[B] are connected.

(a) (b)

Figure 3: (a) A graph formed from gluing three copies of K5 at three vertices and then deleting two
edges in their intersection. (b) A 3-rigid 3-circuit.

Claim. If A = {a1, a2, a3} and B = {b1, b2, b3}, then G has a 3-dimensional generic realization with
a PSD equilibrium stress.

Proof. Note that |Ec| = 14 and |Ec(A,B)| = 9. If |Ec[C]| = 1 then G is a deleted 3-sum of two smaller
graphs. The result now follows from [11, Lemma 17(a)], Lemma 2.8 and the fact that all 3-circuits on
7 or fewer vertices support a PSD equilibrium stress (see Lemma 3.6).

Now suppose |Ec[C]| ∈ {2, 3}. Since |A| = |B|, we may assume, without loss of generality, that
the number of non-edges with an end in A is less than the number of non-edges with an end in B; we
shall define these sets as Ec

A := Ec[A ∪ C] \ Ec[C] and Ec
B := Ec[B ∪ C] \ Ec[C]. We now have three

possible cases; |Ec
A| = 0, |Ec

A| = |Ec
B | = 1, or |Ec

A| = 1 and |Ec
B | = 2.

Suppose |Ec
A| = 0. Since G[A∪C] cannot be 3-dependent, we must have |Ec

B | = 2 and |Ec[C]| = 3.
By checking the possible non-edge combinations, we note that either no vertex of C is a node and G
can be formed from the 3-rigid 3-circuit described in Figure 3(b) by a 1-extension (and hence we are
done by Lemmas 2.6 and 3.4), or C contains a node adjacent to only one vertex in B. As the only
graph that satisfies the latter condition contains a double-banana subgraph (i.e. the flexible 3-circuit
formed by the deleted 2-sum of two copies of K5), which can be found by deleting the node in C, we
are done by Lemma 2.8.

Now suppose |Ec
A| = |Ec

B | = 1 (and hence |Ec[C]| = 3). If the non-edges in Ec
A and Ec

B share an
end then G will contain a double-banana subgraph, so we may assume otherwise. By checking all the
remaining non-edge combinations, we see that we can always 1-reduction to a node in A that adds an
edge between vertices in C, then apply another 1-reduction to a node in B that adds an edge between
vertices in C, and end up with the graph H3. By Lemma 2.8, H3 has a PSD equilibrium stress, and
by observation of the corresponding stress matrix we note it must have rank at least 2. The result
now follows from Lemma 2.6.

3Since equilibrium stresses are invariant under affine transformations, we can find three generic frameworks
(K5, p

1), (K5, p
2), (K5, p

3) with PSD equilibrium stresses ω1, ω2, ω3 respectively so that: (i) p1ci = p2ci = p3ci for each
i ∈ {1, 2, 3}, (ii) ω1

c1c2
+ω2

c1c2
+ω3

c1c2
= 0, (iii) ω1

c1c3
+ω2

c1c3
+ω3

c1c3
= 0, and (iv) the framework (G, p) formed by gluing

all three frameworks at the vertices c1, c2, c3 and deleting the edges c1c2, c1c3 is regular. The obtained framework will
have a PSD equilibrium stress ω = ω1 + ω2 + ω3, where ωi is the extension of ωi to the edges of G+ c1c2 + c1c3.
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Finally, suppose that |Ec
A| = 1 and |Ec

B | = 2 (and hence |Ec[C]| = 2). By relabelling we may
assume c1c2, c2c3 ∈ Ec[C] (i.e. c1c3 ∈ E) and a1 is a node. If a1c2 is a non-edge then G[A ∪ C]
contains a copy of K5, hence we may choose a non-edge e ∈ {c1c2, c2c3} so that both end points of e
are neighbours of a1 in G. First suppose G has two non-edges bicx, bjcx for distinct bi, bj . We must
have cx 6= c2, as otherwise G[B ∪ C] will contain a copy of K5. If cx is not a node, then G is a
deleted 3-sum of the globally 3-rigid graphs K6 −{e, f} (see Theorem 3.2) and K5; hence G will have
a PSD equilibrium stress by Lemma 2.8. If cx is a node then G − cx is the 2-sum of two copies of
K5; hence G will have a PSD equilibrium stress by Lemma 2.8. Now suppose G does not have two
vertices in B that are adjacent to the same vertex in the complement of G. Define G′ := G− a1 + e.
If Ec

B = {bibj, bkcℓ} for distinct i, j, k, then the 1-reduction G′− bi+ bkcℓ of G
′ is H3; hence the results

follows from our previous observations of H3 and Lemma 2.6. If Ec
B = {bicx, bjcy} for distinct i, j and

distinct x, y, then G′ is the 3-sum of a copy of K5 and the globally 3-rigid 3-circuit KB∪C − Ec
B (see

Theorem 3.2). Hence by Lemma 2.8, G has a PSD equilibrium stress.

Claim. If A = {a1, a2} and B = {b1, b2, b3, b4} then G has a 3-dimensional generic realization with a
PSD equilibrium stress.

Proof. We note that a1a2 ∈ E and a1ci, a2ci ∈ E for each i ∈ {1, 2, 3}, as otherwise a1 and a2 would
have a degree of 3 or less in G. If G[C] has 3 edges, then G[A∪C] would be K5 and so G would not be
a 3-circuit. If G[C] has 2 edges then G is the 3-sum of K5 and another 3-circuit with 7 vertices by [11,
Lemma 17(a)], and hence G will have a 3-dimensional generic realization with a PSD equilibrium stress
by Lemmas 2.8 and 3.4. Suppose that G[C] has either no edges or 1 edge. Applying a 1-reduction at
either a1 or a2 and then applying a 0-reduction to the remaining vertex in A is equivalent to deleting
both a1 and a2 and adding an edge between two vertices in C. For brevity we refer to this process as
an A-move.

Suppose that there exists an A-move that gives a graph with minimum degree 2. We can check all
the possible cases where this happens by observing that G has 6 non-edges with both ends in B ∪C,
and at least two non-edges must have both ends in C. In every case we see that G would contain
either K5 or K6 − {e, f} as a subgraph, contradicting that G is a 3-circuit. Hence we may assume
that any A-move produces a graph with minimum degree 3.

Now suppose that every A-move produces a graph with minimal degree 3. As G is a 3-circuit,
any vertex of degree 3 of G′ must lie in C. By checking the various assignments of non-edges between
vertices in B and C we see that G[C] must contain no edges; any possible graph where every A-move
gives a graph with minimum degree 3 and G[C] contains an edge would force G to contain either K5

or the 3-circuit K6 − {e, f}. This leaves the two possible 3-rigid 3-circuits given in Figure 4. The
graph on the left has a vertex that we can apply a 1-reduction to so as to obtain the graph in Figure
3(b). We can verify that the claim holds for the remaining graph on the right in a similar manner as
in Lemma 3.1.4

Hence, using the handshaking lemma, we may assume that G has an A-move that produces a
graph G′ with minimal degree 4. If G′ is globally 3-rigid the result follows from Theorem 2.3 and
Lemma 2.6, so we may suppose G′ is not globally 3-rigid. By an easy case-by-case check of graphs on
7 vertices with minimum degree 4 and 16(= 3 ·7−5) edges, we see that we must have G′ = H3. As we
are assuming G has no separating set of size 3 with more than 1 edge, it follows that G must be one
of the three graphs depicted in Figure 5; we can see this by systematically applying reverse A-moves
to H3. We can obtain the 3-rigid 3-circuit in Figure 3(b) from the graph in Figure 5(a) by applying
a 1-reduction at the red vertex and adding the red edge, hence it will also have a 3-dimensional PSD
equilibrium stress by Lemmas 2.6 and 3.4. For the other two graphs in Figure 5, we can apply a

4Let G = (V,E) be the graph defined as follows. Put V = {a1, a2, b1, b2, b3, b4, c1, c2, c3} and E2 =
{a1a2, a1c1, a1c2, a1c3, a2c1, a2c2, a2c3, b1b2, b1b3, b1b4, b2b3, b2b4, b3b4, b1c1, b1c2, b2c1, b2c2, b2c3, b3c1, b3c3, b4c2, b4c3}. De-
fine (G, p) in R

3 by putting p(a1) = (−42,−45,−40), p(a2) = (44, 48, 44), p(b1) = (9,−1,−7), p(b2) = (−8,−8, 3),
p(b3) = (−1,−4,−5), p(b4) = (3,−7, 3), p(c1) = (1,−1, 9), p(c2) = (−3,−3,−4) and p(c3) = (−5,−10,−6). Given this
realization it is simple for the reader to verify that (Gi, p) is infinitesimally rigid in R

3 and that the unique equilibrium
stress of (G, p) has a PSD stress matrix of rank 4. Since G is not globally 3-rigid, it follows that a sufficiently nearby
generic framework (G, q) has a rank 4 PSD equilibrium stress.
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Figure 4: The only two possible graphs that G can be if every A-move gives a graph with minimal
degree 3.

(a) (b) (c)

Figure 5: (a) Ignoring the red edge, a 3-rigid 3-circuit that can be formed from the 3-rigid 3-circuit in
Figure 3(b) by a 1-extension. (b)–(c) Ignoring the red and blue edges, two graphs that can be formed
from H3 by two consecutive 1-extensions.

1-reduction at the red vertex to add the red edge and then a 1-reduction at the blue vertex that adds
the blue edge to obtain H3. Hence Lemmas 2.6 and 3.4 complete the proof.

The above claims cover all possibilities and hence complete the proof.
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A 1-extensions that preserve PSD equilibrium stresses

We prove Lemma 2.6. We first require the following technical result from [7, Lemma 4.9] and the
discussion around it.

Lemma A.1. Let (G, p) be a d-dimensional framework and ω a PSD equilibrium stress of (G, p) and
let xy be an edge of G so that ωxy > 0. Then there is a non-singular projective transformation T on
R
d so that (G,T (p)) has a PSD equilibrium stress ψ so that ψxy < 0.

Proof of Lemma 2.6. Let xy be the edge deleted during the 1-extension and z be the vertex added to
form G′. Denote the neighbours of z that are neither x nor y by v1, . . . , vd−1. For each t ∈ R, define
pt to be the realization of G′ in R

d where ptv = pv for all v ∈ V and ptz = tpx+(1− t)py. Also for each
t ∈ R define the map ωt : E′ → R by setting ωt

e = ωe for all e ∈ E, ωt
xz = (1 − t)−1ωxy, ω

t
yz = t−1ωxy
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and ωt
zvi

= 0 for all i ∈ {1, . . . , d− 1}. Note that for each t ∈ R, ωt is an equilibrium stress of (G′, pt).
Since G is a d-circuit, ωxy 6= 0. Hence by Lemma A.1, we may suppose that ωxy = −1.

Given Ω is the equilibrium stress matrix associated with ω, the equilbrium stress matrix associated
with ωt is the matrix

Ωt =

[

Mt 03×(|V |−2)

0(|V |−2)×3 0(|V |−2)×(|V |−2)

]

+

[

0 01×|V |

0|V |×1 Ω

]

,

where

Mt =





−1
t(1−t)

1
1−t

1
t

1
1−t

−t
1−t

−1
1
t

−1 t−1
t



 .

Suppose a ∈ R
E is an element of the kernel of Ωt. By observing the z-coordinate of Ωta we see that

az = tax + (1− t)ay. By observing the x- and y-coordinates of Ωta with this substitution we see that
∑

v∈NG(x) ω
t(ax − av) = 0 and

∑

v∈NG(y) ω
t(ay − av) = 0. Thus the nullity of Ωt is equal to the nullity

of Ω, and so rankΩt = rankΩ + 1 ≥ |V ′| − d− 2 for each t 6= 0, 1. As rankMt = 1 for all t 6= 0, 1 and

Mt →





0 0 0
0 1 −1
0 −1 1



 as t→ ∞,

the matrix Mt is PSD for sufficiently large t. Hence we can now fix some T > 1 such that ΩT is PSD.
By Lemma 2.5, (G′, pt) is infinitesimally rigid, hence there exists an open neighbourhood U of pT

where for each p′ ∈ U , the framework (G′, p′) has exactly one (up to scalar multiplication) equilibrium
stress and the rigidity matrix R(G′, p′) has maximal rank over all realizations. It follows that we can
define a continuous map λ : U → R

E′

such that λ(q) is an equilibrium stress of (G′, q) and λ(pT ) = ωT .
Suppose that an equilibrium stress λ(q) has rank |V ′| − d− 1 for some q ∈ U . By [5, Theorem 1.3], G′

is globally d-rigid. Hence there exists a generic framework (G′, p′) with a PSD equilibrium stress of
rank |V ′| − d− 1 by Theorem 2.3. Suppose instead that the equilibrium stress λ(q) has rank at most
|V ′| − d− 2 for all q ∈ U . Then the rank of the equilibrium stress λ(pT ) = ωT is maximal over U . As
the rank function is lower semi-continuous, there exists an open neighbourhood U ′ ⊂ U of pT where
each equilibrium stress λ(q) with q ∈ U ′ has rank |V ′| − d− 2.

Define, for each i ∈ {1, . . . , |V ′|}, the continuous map µi : U
′ → R

|V |−d−2 which maps a realization
q ∈ U ′ to its i-th highest eigenvalue of the equilibrium stress matrix associated to λ(q). Since ωT is
PSD with rank |V ′| − d− 2, µi(p

T ) > 0 for all i ≤ |V ′| − d− 2 and µi(p
T ) = 0 for all i > |V ′| − d− 2.

By the continuity of the µi maps, there exists a sufficiently close generic realization p′ ∈ U ′ where
µi(p

′) > 0 for all i ≤ |V ′|−d−2. Since the rank of λ(p′) is |V ′|−d−2, µi(q) = 0 for all i > |V ′|−d−2
also. Hence the generic framework (G′, p′) has a PSD equilibrium stress of rank |V ′| − d− 2.
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