16,683 research outputs found

    Strengths and Weaknesses of Quantum Computing

    Full text link
    Recently a great deal of attention has focused on quantum computation following a sequence of results suggesting that quantum computers are more powerful than classical probabilistic computers. Following Shor's result that factoring and the extraction of discrete logarithms are both solvable in quantum polynomial time, it is natural to ask whether all of NP can be efficiently solved in quantum polynomial time. In this paper, we address this question by proving that relative to an oracle chosen uniformly at random, with probability 1, the class NP cannot be solved on a quantum Turing machine in time o(2n/2)o(2^{n/2}). We also show that relative to a permutation oracle chosen uniformly at random, with probability 1, the class NP∩coNPNP \cap coNP cannot be solved on a quantum Turing machine in time o(2n/3)o(2^{n/3}). The former bound is tight since recent work of Grover shows how to accept the class NP relative to any oracle on a quantum computer in time O(2n/2)O(2^{n/2}).Comment: 18 pages, latex, no figures, to appear in SIAM Journal on Computing (special issue on quantum computing

    CCS from industrial sources

    No full text
    The literature concerning the application of CCS to industry is reviewed. Costs are presented for different sectors including ``high purity'' (processes which inherently produce a high concentration of CO2), cement, iron and steel, refinery and biomass. The application of CCS to industry is a field which has had much less attention than its application to the electricity production sector. Costs range from less than 201110/tCO2uptoabove2011 10/tCO 2 up to above 2011 100/tCO 2 . In the words of a synthesis report from the United Nations Industrial Development Organisation (UNIDO) ``This area has so far not been the focus of discussions and therefore much attention needs to be paid to the application of CCS to industrial sources if the full potential of CCS is to be unlocked''

    Deriving Boltzmann Equations from Kadanoff-Baym Equations in Curved Space-Time

    Full text link
    To calculate the baryon asymmetry in the baryogenesis via leptogenesis scenario one usually uses Boltzmann equations with transition amplitudes computed in vacuum. However, the hot and dense medium and, potentially, the expansion of the universe can affect the collision terms and hence the generated asymmetry. In this paper we derive the Boltzmann equation in the curved space-time from (first-principle) Kadanoff-Baym equations. As one expects from general considerations, the derived equations are covariant generalizations of the corresponding equations in Minkowski space-time. We find that, after the necessary approximations have been performed, only the left-hand side of the Boltzmann equation depends on the space-time metric. The amplitudes in the collision term on the right--hand side are independent of the metric, which justifies earlier calculations where this has been assumed implicitly. At tree level, the matrix elements coincide with those computed in vacuum. However, the loop contributions involve additional integrals over the the distribution function.Comment: 14 pages, 5 figures, extended discussion of the constraint equations and the solution for the spectral functio

    Telescopes don't make catalogues!

    Full text link
    Astronomical instruments make intensity measurements; any precise astronomical experiment ought to involve modeling those measurements. People make catalogues, but because a catalogue requires hard decisions about calibration and detection, no catalogue can contain all of the information in the raw pixels relevant to most scientific investigations. Here we advocate making catalogue-like data outputs that permit investigators to test hypotheses with almost the power of the original image pixels. The key is to provide users with approximations to likelihood tests against the raw image pixels. We advocate three options, in order of increasing difficulty: The first is to define catalogue entries and associated uncertainties such that the catalogue contains the parameters of an approximate description of the image-level likelihood function. The second is to produce a K-catalogue sampling in "catalogue space" that samples a posterior probability distribution of catalogues given the data. The third is to expose a web service or equivalent that can re-compute on demand the full image-level likelihood for any user-supplied catalogue.Comment: presented at ELSA 2010: Gaia, at the frontiers of astrometr

    Orthosymplectically invariant functions in superspace

    Get PDF
    The notion of spherically symmetric superfunctions as functions invariant under the orthosymplectic group is introduced. This leads to dimensional reduction theorems for differentiation and integration in superspace. These spherically symmetric functions can be used to solve orthosymplectically invariant Schroedinger equations in superspace, such as the (an)harmonic oscillator or the Kepler problem. Finally the obtained machinery is used to prove the Funk-Hecke theorem and Bochner's relations in superspace.Comment: J. Math. Phy

    Quantum Weakly Nondeterministic Communication Complexity

    Full text link
    We study the weakest model of quantum nondeterminism in which a classical proof has to be checked with probability one by a quantum protocol. We show the first separation between classical nondeterministic communication complexity and this model of quantum nondeterministic communication complexity for a total function. This separation is quadratic.Comment: 12 pages. v3: minor correction

    Orbit closures in the enhanced nilpotent cone

    Get PDF
    We study the orbits of G=GL(V)G=\mathrm{GL}(V) in the enhanced nilpotent cone V×NV\times\mathcal{N}, where N\mathcal{N} is the variety of nilpotent endomorphisms of VV. These orbits are parametrized by bipartitions of n=dim⁡Vn=\dim V, and we prove that the closure ordering corresponds to a natural partial order on bipartitions. Moreover, we prove that the local intersection cohomology of the orbit closures is given by certain bipartition analogues of Kostka polynomials, defined by Shoji. Finally, we make a connection with Kato's exotic nilpotent cone in type C, proving that the closure ordering is the same, and conjecturing that the intersection cohomology is the same but with degrees doubled.Comment: 32 pages. Update (August 2010): There is an error in the proof of Theorem 4.7, in this version and the almost-identical published version. See the corrigendum arXiv:1008.1117 for independent proofs of later results that depend on that statemen

    Simplifying responsible research and innovation – a tool building in societal readiness into research

    Get PDF
    Researchers and research funders are increasingly seeking to ensure their work is aligned to societal needs and to prevent it from having foreseeable negative impacts, particularly in fast moving and ethically sensitive fields. In this post, Stefan de Jong, Michael J. Bernstein and Ingeborg Meijer, describe their work developing a tool that facilitates researchers and research funders to incorporate responsible research and innovation values into their work

    The Low-Energy Theorem of Pion Photoproduction in Soliton Models of the Nucleon

    Get PDF
    We derive an analytic expression for the Kroll-Ruderman amplitude up to the order 1/N_C for general Skyrme-type models of the nucleon. Due to the degeneracy of intermediate N- and Delta-states we find deviations from the standard low-energy theorem for the photoproduction of neutral pions.Comment: 17 pages, LATEX, SI-93-TP3S
    • 

    corecore