212 research outputs found

    A primer of swarm equilibria

    Get PDF
    We study equilibrium configurations of swarming biological organisms subject to exogenous and pairwise endogenous forces. Beginning with a discrete dynamical model, we derive a variational description of the corresponding continuum population density. Equilibrium solutions are extrema of an energy functional, and satisfy a Fredholm integral equation. We find conditions for the extrema to be local minimizers, global minimizers, and minimizers with respect to infinitesimal Lagrangian displacements of mass. In one spatial dimension, for a variety of exogenous forces, endogenous forces, and domain configurations, we find exact analytical expressions for the equilibria. These agree closely with numerical simulations of the underlying discrete model.The exact solutions provide a sampling of the wide variety of equilibrium configurations possible within our general swarm modeling framework. The equilibria typically are compactly supported and may contain δ\delta-concentrations or jump discontinuities at the edge of the support. We apply our methods to a model of locust swarms, which are observed in nature to consist of a concentrated population on the ground separated from an airborne group. Our model can reproduce this configuration; quasi-two-dimensionality of the model plays a critical role.Comment: 38 pages, submitted to SIAM J. Appl. Dyn. Sy

    Viscous Cross-waves: An Analytical Treatment

    Get PDF
    Viscous effects on the excitation of cross‐waves in a semi‐infinite box of finite depth and width are considered. A formalism using matched asymptotic expansions and an improved method of computing the solvability condition is used to derive the relative contributions of the free‐surface, sidewall, bottom, and wavemaker viscous boundary layers. This analysis yields an expression for the damping coefficient previously incorporated on heuristic grounds. In addition, three new contributions are found: a viscous detuning of the resonant frequency, a slow spatial variation in the coupling to the progressive wave, and a viscous correction to the wavemaker boundary condition. The wavemaker boundary condition breaks the symmetry of the linear neutral stability curve at leading order for many geometries of experimental interest

    Rapid Relaxation of an Axisymmetric Vortex

    Get PDF
    In this paper it is argued that a two‐dimensional axisymmetric large Reynolds number (Re) monopole when perturbed will return to an axisymmetric state on a time scale (Re1/3) that is much faster than the viscous evolution time scale (Re). It is shown that an arbitrary perturbation can be broken into three pieces; first, an axisymmetric piece corresponding to a slight radial redistribution of vorticity; second, a translational piece which corresponds to a small displacement of the center of the original vortex; and finally, a nonaxisymmetric perturbation which decays on the Re1/3 time scale due to a shear/diffusion averaging mechanism studied by Rhines and Young [J. Fluid Mech. 133, 133 (1983)] for a passive scalar and Lundgren [Phys. Fluids 25, 2193 (1982)] for vorticity. This mechanism is verified numerically for the canonical example of a Lamb monopole. This result suggests a physical explanation for the persistence of monopole structures in large Reynolds flows, such as decaying turbulence

    Wavenumber Selection of Convection Rolls in a Box

    Get PDF
    The dynamics of two‐dimensional Rayleigh–Bénard convection rolls are studied in a finite layer with no‐slip, fixed temperature upper and lower boundaries and no‐slip insulating side walls. The dominant mechanism controlling the number of rolls seen in the layer is an instability concentrated near the side walls. This mechanism significantly narrows the band of stable wavenumbers although it can take a time comparable to the long (horizontal) diffusion time scale to operate

    A model for rolling swarms of locusts

    Get PDF
    We construct an individual-based kinematic model of rolling migratory locust swarms. The model incorporates social interactions, gravity, wind, and the effect of the impenetrable boundary formed by the ground. We study the model using numerical simulations and tools from statistical mechanics, namely the notion of H-stability. For a free-space swarm (no wind and gravity), as the number of locusts increases, it approaches a crystalline lattice of fixed density if it is H-stable, and in contrast becomes ever more dense if it is catastrophic. Numerical simulations suggest that whether or not a swarm rolls depends on the statistical mechanical properties of the corresponding free-space swarm. For a swarm that is H-stable in free space, gravity causes the group to land and form a crystalline lattice. Wind, in turn, smears the swarm out along the ground until all individuals are stationary. In contrast, for a swarm that is catastrophic in free space, gravity causes the group to land and form a bubble-like shape. In the presence of wind, the swarm migrates with a rolling motion similar to natural locust swarms. The rolling structure is similar to that observed by biologists, and includes a takeoff zone, a landing zone, and a stationary zone where grounded locusts can rest and feed.Comment: 18 pages, 11 figure

    Mean Field Effects for Counterpropagating Traveling Wave Solutions of Reaction-Diffusion Systems

    Get PDF
    In many problems, e.g., in combustion or solidification, one observes traveling waves that propagate with constant velocity and shape in the x direction, say, are independent of y and z and describe transitions between two equilibrium states, e.g., the burned and the unburned reactants. As parameters of the system are varied, these traveling waves can become unstable and give rise to waves having additional structure, such as traveling waves in the y and z directions, which can themselves be subject to instabilities as parameters are further varied. To investigate this scenario we consider a system of reaction-diffusion equations with a traveling wave solution as a basic state. We determine solutions bifurcating from the basic state that describe counterpropagating traveling waves in directions orthogonal to the direction of propagation of the basic state and determine their stability. Specifically, we derive long wave modulation equations for the amplitudes of the counterpropagating traveling waves that are coupled to an equation for a mean field, generated by the translation of the basic state in the direction of its propagation. The modulation equations are then employed to determine stability boundaries to long wave perturbations for both unidirectional and counterpropagating traveling waves. The stability analysis is delicate because the results depend on the order in which transverse and longitudinal perturbation wavenumbers are taken to zero. For the unidirectional wave we demonstrate that it is sufficient to consider the cases of (i) purely transverse perturbations, (ii) purely longitudinal perturbations, and (iii) longitudinal perturbations with a small transverse component. These yield Eckhaus type, zigzag type, and skew type instabilities, respectively. The latter arise as a specific result of interaction with the mean field. We also consider the degenerate case of very small group velocity, as well as other degenerate cases, which yield several additional instability boundaries. The stability analysis is then extended to the case of counterpropagating traveling waves

    Scroll Waves in the Presence of Slowly Varying Anisotropy with Application to the Heart

    Get PDF
    We consider the dynamics of scroll waves in the presence of rotating anisotropy, a model of the left ventricle of the heart in which the orientation of fibers in successive layers of tissue rotates. By choosing a coordinate system aligned with the fiber rotation and studying the phase dynamics of a straight but twisted scroll wave, we derive a Burgers’ equation with forcing associated with the fiber rotation rate. We present asymptotic solutions for scroll twist, verified by numerics, using a realistic fiber distribution profile. We make connection with earlier numerical and analytical work on scroll dynamics

    Quasi-steady Monopole and Tripole Attractors in Relaxing Vortices

    Get PDF
    Using fully nonlinear simulations of the two-dimensional Navier–Stokes equations at large Reynolds number (Re), we bracket a threshold amplitude above which a perturbed Gaussian monopole will relax to a quasi-steady, rotating tripole, and below which will relax to an axisymmetric monopole. The resulting quasi-steady structures are robust to small perturbations. We propose a means of measuring the decay rate of disturbances to asymptotic vortical structures wherein streamlines and lines of constant vorticity correspond in some rotating or translating frame. These experiments support the hypothesis that small or moderate deviations from asymptotic structures decay through inviscid and viscous mixing
    corecore