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Quasi-steady monopole and tripole attractors for relaxing vortices
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Using fully nonlinear simulations of the two-dimensional Navier—Stokes equations at large
Reynolds numberfRe), we bracket a threshold amplitude above which a perturbed Gaussian
monopole will relax to a quasi-steady, rotating tripole, and below which will relax to an
axisymmetric monopole. The resulting quasi-steady structures are robust to small perturbations. We
propose a means of measuring the decay rate of disturbances to asymptotic vortical structures
wherein streamlines and lines of constant vorticity correspond in some rotating or translating frame.
These experiments support the hypothesis that small or moderate deviations from asymptotic
structures decay through inviscid and viscous mixing. 1€97 American Institute of Physics.
[S1070-663(97)02708-9

I. INTRODUCTION streamline. They showed that shear steepens concentration
gradients across streamlines which are then smoothed by dif-
Laboratory experiments and numerical simulations offusion, homogenizing the concentration along streamlines on
two-dimensional, large Reynolds numb@e) flows reveal the Pé” timescale, much faster than the Pe diffusive time-
the existence of isolated, long-lived vortical structures suclscale(Pe is the Pelet numbe). Recently, we incorporated
as monopoles, dipoles, and tripofes.In this article, we this mechanism into the linear stability theory for an axisym-
study the evolution and relaxation of an axisymmetricmetric monopolé€. This analysis shows that a linearly per-
Gaussian monopole perturbed by a quadrupolar vorticity disturbed monopole relaxes to an axisymmetric state on the
turbance of weak-to-moderate amplitude. We find that forshear-diffusion timescale (R8. Unfortunately, measuring
sufficiently small amplitude nonaxisymmetric distortions, thedecay toward a quasi-steady, nonaxisymmetric structure,
perturbed monopole relaxes to an axisymmetric state, but fauch as the tripoles observed in our experiments, is problem-
larger initial distortions, the vortex relaxes to a quasi-steadwatic because there is no direct way to measure the distance of
rotating tripole(see Fig. 1 Furthermore, we find that these an evolving state from the asymptotic state without an
tripole structures are robust to small disturbances. These nasymptotic solution. This contributes to our failure to differ-
merical results highlight the existence of monopole and tri-entiate between the Re timescale and thé®Rémescale.
pole attractors at large Reynolds numbers, and we suggekiowever, we do formulate a consistent measurement tech-
shearing and diffusion may even enhance the rate at whichique that can measure the decay to a certain point in the
the perturbed initial conditions approach these attractorsevolution of the nonaxisymmetric structure.
They also suggest the existence of a perturbation threshold Tripoles have been observed in numerical and laboratory
which separates the monopole and tripole domains of attraexperiments of decaying turbulence and dipole—dipole colli-
tion. sions for some timé&®’~°0ur full nonlinear simulations of
The decay rate of vortical structures toward an attractodistorted axisymmetric monopoles suggest that shear-
is associated with the homogenization of disturbancesliffusion mixing governs the relaxation toward the tripole
through mixing. If disturbances to one structure are mixedattractor for a moderate perturbation just as it would toward
more efficiently than for another structure, the former will the monopole attractor for slight perturbations. In the case of
relax much more quickly. In the experiments described inthe tripole, the positive portion of the quadrupolar distur-
this paper, we increase the amplitude of the disturbance to laance is thoroughly mixed, while the negative portion per-
point where mixing no longer occurs across the entire monosists to form a quasi-steady rotating tripole. The persistence
pole. When this happens, we find that disturbances are naif the negative portion of the perturbation is due to the cre-
homogenized in some regions. Rather, part of the disturation of a separatrix of the streamlines in a frame rotating
bance persists with the original monopole, yielding a com-with the vortical structure by the perturbation vorticity. The
pletely different stable attractor called a tripole. effect of this distortion is to nullify the shearing of the nega-
The simultaneous shearing and diffusion of vorticity tive vorticity inclusions by the background velocity field.
governs the intermediate timescale {Rerelaxation of per-  Therefore, shear-diffusion mixing cannot occur between the
turbed monopoles and, we suspect, tripoles. Rhines angegative inclusion and the rest of the structure. A similar
Young studied the shear-diffusion mechanism in their analyinviscid experiment with an elliptical top-hat vorticity profile
sis of the mixing of a passive scalar in a region of closedndicated rapid axisymmetrization in the sense described ear-
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FIG. 1. A perturbed monopole relaxes toward a tripolar attractor if the perturb@tief.25 is strong enough. The full vorticity field is on the left, the
perturbation relative to the Lamb monopole base state is in the center, and the corotating stream (&eet®ec. 1Yis on the right. Time increases from
top to bottom. The contours are remain constant throughout the $8r@es10™2 per division(left) and 1.25 102 per division(middle). Dotted contours
are negative.The final structure persists for the remainder of the simulation.

2330 Phys. Fluids, Vol. 9, No. 8, August 1997 Rossi, Lingevitch, and Bernoff

Downloaded-02-Mar-2011-t0-134.173.130.140.-Redistribution-subject-to-AlP-license-or-copyright;~see-http://pof.aip.org/about/rights_and_permissions



lier, but since there was no negative vorticity, there could bébasic state which we perturb with nonaxisymmetric distor-
no local disruption of shear within the structdfeThe rami-  tions. In fact, all axisymmetric monopoles will relax to a
fications of this work are that nonaxisymmetric perturbationsGaussian monopole as-.® However, while shear diffu-
to a stable monopole may not decay back to the base state, sion plays no role in axisymmetric vortex evolution, it may
some investigators have assumed in both analytic and nisignificantly affect the relaxation of nonaxisymmetric pertur-
merical work!?-14 bations to the monopole. To examine the decay of a nonaxi-
symmetric perturbation to a Lamb monopole, we define the
I MIXING IN VORTICAL STRUCTURES nonaxisymmetric enstrophy of the monopole:

Large Reynolds number flows exhibit the emergence and E, = f [w(x)—{w(]x]))]%dX, 3
persistence of a variety of vortical structufésQuasi-steady
vortices are those that maintain approximately the same vor- 1 [2n
ticity distribution in some appropriate reference frame for <w(|X|)>:E f w(x)dé. (4)
many turnover times and evolve solely through viscous dif- 0
fusion on a slow(Re) timescale. Fundamental examples areThis is a natural quantification for axisymmetric structures
monopoles(stationary, dipoles (translating, and tripoles because it represents thg norm of the nonaxisymmetric
(rotating. Viewed in their respective reference frames,portion of the vorticity field. Using this measurement, the
guasi-steady vortices are characterized by the approximatamear stability theory for a Lamb monopole was examined in
alignment of their vorticity contours and streamlines: a previous papetBelow, we briefly review the main results
u-Vo=0. It is known that mixing in regions of closed of the stability theory as a motivation for our study of finite
streamlines may greatly enhance the effectiveness of diffuamplitude distortions to Gaussian monopoles. To study the
sion in homogenizing passive tracers along streamfinesrelaxation of more general perturbed quasi-steady vortices,
Similarly, mixing has also been shown to enhance the decathe nonaxisymmetric enstrophy is not the appropriate mea-
of nonaxisymmetric disturbances to axisymmetricsurement for quantifying the deviation of the vorticity from
monopoles. In this section, we examine how mixing in re- its quasi-steady state. In Sec. IV, we formulate a more gen-
gions of closed streamlines may effect the relaxation of aral technique that measures decay relative to corotating vor-
perturbed vortex to a stable quasi-steady state. First, we ikcal structures.
lustrate the mechanism of shear-diffusion mixing in the con-  To study perturbed monopoles, it is useful to incorporate
text of the large Reynolds number linear stability of an exacthe Lamb solution into Eq.1) and to obtain an equation for
monopole solution to the Navier—Stokes equations, thehe perturbation vorticity. The total vorticity is written as a
Lamb monopole. Then, we speculate on how mixing appliesum of the Lamb solutionpy, and a perturbationyp’. The
more generally to vortices and formulate several numericagévolution ofw’ is governed by
experiments to investigate the extent and limitations of mix- 1
ing in vortices. In the next section, we discuss the results of 5 ;' + y;- Vo' +u’' - Vwpe+ U’ -Vo'= — V20', (5
our numerical simulations. Re

The large Reynolds number stability of the Lamb mono-ynere u,, u’ are the velocity fields induced by the Lamb
pole illustrates how mixing enhances the decay of nonaximonopole and perturbation vorticity, respectively. The linear

symmetric disturbances to a axisymmetric monopole muclyap;jity equation follows from Eq5) by neglecting the qua-
quicker than the viscous timescale. Below, we formulate theyratic nonlinear ternfu’ - Vo).

large Reynolds numbgiRe>1) monopole problem that we Shear-diffusion mixing of vorticity perturbations in the
solve numerically in Sec. Ill. We are studying the evolution| amp monopole is qualitatively similar to the mixing of pas-
of a two-dimensional, incompressible flow which is de-gje scalars in shear flows, first studied by Rhines and

scribed by the Navier—Stokes equations Young? A passive scalar obeys a similar advection diffusion
1 equation(i.e., Eq.(5) linearized and neglecting th€ - Vw
dhotu- Vo= R—eVzw, (1) term]. A nonaxisymmetric initial distribution of vorticityor

passive scalaris sheared by differential rotation in the

whereuw is the total vorticity,u is the velocity field related to  monopole. Diffusion between the sheared layers homog-
the vorticity through the Biot—Savart integral, and Re is theenizes the vorticityor passive scalamlong streamlines on
Reynolds number, which for our experiments is defined to benhe shear-diffusion timescale Fé%(or Pé”3 where Pe is the
the total circulation divided by the viscosity.An exact, Pealet numbey. In linear theory, a general vorticity pertur-
self-similar, axisymmetric solution of Ed1) is the Lamb  bation is decomposed into three independent components:
monopole, axisymmetric, translational, and the portion which is or-

F{ |x|2 thogonal to the axisymmetric and translational components.
— X~ = (2 The axisymmetric portion of the disturbance radially diffuses
4m(1+1/Re) 4(1+tRe) on the Re timescal?a, analogously to the base state. The trans-
This Gaussian vortex is exponentially localized and spreaditional piece represents a small displacement of the vorticity
radially on the viscous timescale (R through viscous dif- centroid of the monopole and is conserved. The remaining
fusion. The Lamb solution serves as a canonical example gjortion of the perturbation decays on the shear-diffusion
an axisymmetric large Reynolds number monopole and is théRe'®) timescale. Note that the decay timescale, (¥reis

a)o(X,t) -
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asymptotically (i.e., as Re»x) faster than the viscous Ill. THE MONOPOLE RELAXATION EXPERIMENTS
spreading of the monopol&e). A linearly perturbed Gauss-
ian vortex will therefore become axisymmetric on the shear- We simulated the evolution and morphology of the per-
diffusion timescale, much quicker than the Lamb monopolgurbed monopole using the corrected core spreading vortex
diffuses. The result of the Lamb monopole linear stabilitymethod(CCSVM).}” However, we implemented two differ-
analysis is that the shear-diffusion mechanism attenuates tlemt versions of it for different regimes. One version directly
residual portion (i.e., nonaxisymmetric, nontranslational solves Eq(1); the other solves Eq5). When§'is large and
component of the vorticity perturbation on the Rétimes-  the perturbation is comparable to the unperturbed Lamb
cale at a rate proportional ©”, wheren is the azimuthal monopole, we directly simulated the full vorticity field. The
wave number of the disturbante. disadvantage to a direct simulation is that the full fielg,
The shear-diffusion mixing mechanism fails in the re- " s calculated, ignoring the fact an exact solution for
gions where shear vanishes such as translation or solid body, is known. Thus numerical errors will accumulate in both
rotation. In this case, there is no differential rotation betweenie|ds. The principle advantage is that the direct calculation
neighboring streamlines. The Kirchoff elliptical vortex pag ng operator splitting for reasons that will be discussed in
patches fall into this category. Another limitation of shear-greater detail in the following paragraphs. In contrast to the

diffusion mixing is that the perturbation vorticity may quali- direct method, approximating the perturbation equatin
tatively alter the stream function so that shearing due to theomd using the exact solution fas, allows numerical errors

base state is insufficient to mix the vorticity. In the next,[0 grow only in «'. A similar perturbative technique has

section, we see an example of this as the perturbation ampli- . ) .
P P Pbroven successful in boundary layer calculatithSince w’

T r
tude to a monopole is mc_:reased b(_eyond a threshold, and tl% (&) and wg is (1), this method is effective for small
vortex relaxes to a quasi-steady tripole rather than a mono= o : ..
pole. values of 6. However, an additional spatial error is intro-

To determine the extent and limitations of shear-duced in the perturbative method because the split step

diffusion mixing in perturbed monopoles, we numerically SCeMe is used. o
simulate finite amplitude distortions to the Lamb monopole. 1 "€ Lagrangian vortex formulation is a natural one for a
The linear stability theory discussed above is applicable t§etailed study of high Reynolds number monopole relaxation
large Reynolds numbers; numerical solutions of the linearfor several reasons. First, the moving basis functions are free
ized equation show good agreement with large Reynold& convect anywhere in the domain when approximating the
number (Re=10%) asymptotic scaling.The numerical simu- expulsed spiral arms of vorticity. Second, the boundary con-
lations discussed in this paper have Reynolds number bélitions for an isolated monopole are naturally satisfied. Spec-
tween Re=10® and Re=10*. Our numerical simulations are tral calculations would simulate the relaxation of a periodic
for finite amplitude quadrupolar perturbations to a Lambarray of monopoles. Finally, the corrected core spreading
monopole. The initial vorticity disturbance is given by method incorporates true viscous diffusion rather than artifi-
cial dissipation such as the more controversial hyperviscosity
(V4)119
cog26), (6) As discussed in Sec. Il, shear and diffusion play a crucial
role in monopole relaxation for infinitesimal perturbations.
Clearly, the R&® relaxation time is much faster than the Re

whered s the argument of. We note that although we refer diffusion timescale, but more importantly, the fast relaxation
to the perturbed vortex as a distorted monopole, it is als§caling depends strongly on titgpe of diffusion. In this
accurate to say that the initial state is a tripole with strengttfase: the ;\pproprl.qte type of diffusion would be viscous dif-
proportional to 5. When & is small, the nonlinear term, fusion »V<w. Intuglvely, simulations using hyperviscosity
u'-Ve' is of higher order in Eq(5), and the evolution of the Would resultin Ré&5 decay rather than the physically correct
perturbed monopole is dominated by linear effects and deR€" for linearized simulation§ Specifically, if one studies a
cays on the R timescale as discussed above. we chose t§imple model problem of a passive scalar in a simple shear
study then=2 azimuthal fourier mode because this pertur-flow, the exact solution will decay on the Htimescale for

bation is the slowest decaying fourier mode, with the excephyperviscosity. More generally, hyperviscosity will balance

tion of portions of them=1 mode that are orthogonal to a the shear terms in the Navier—Stokes equations at the same

translation ofwg. order (R&®). Other forms of dissipation such as those used
In this section, we have described how mixing mayin contour surgery techniques have not been quantified in the

modify the inviscid dynamics of perturbed gquasi-steady vorditerature, and we do not pursue its application in this article.

tex on the R¥® timescale due to the shear-diffusion mecha-Although we are studying high Reynolds number flows

nism. This means for large Reynolds number flows, viscositywhere the shear-diffusion mechanism is applicable, it is cru-

may enhance the equilibration to a quasi-steady state muatial that the numerical dissipation is accurate at the correct

faster than the Re timescale. We expect shear to create smalider.

scale structures which are annihilated by viscosity. Also, we _— .

. . . . . . “A. Exact initial conditions

have discussed how shear is essential for this rapid mixing

process so that one might expect only viscous diffusion to Initially, the vorticity field is approximated as a linear

act in regions where there is little or no shear. combination of Gaussian basis functions:

: S 12 X2
w(X,0)=E|X| eXx —T
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N i groups of overlapping elements are periodically merged
w(X)=2, —— exp( — (7)  when this action induces a controllably small efr.

=1 4moi To calculate a solution to E@5), it is necessary to split
The positions of the basis functions are arranged on a reguldiie operator by alternatively solving E¢l) for ' rather
grid to approximate the initial vorticity fieldwg(x,0) thanw, and then solving
+w'(x,0). The most direct way to assign circulations to the dw'=—(U'-V)wy (13)

basis functions is
for one time step. Computationally, one integrates each
Yi=f(x)Ax=[wo(x,0) + @’ (x;,0)]Ax;, (8 equation for one full time step. In this case, E43) is ap-
whereAx; is the area surrounding mesh node Assuming ~ Proximated by adding computational elements on a regular
that the Gaussians overlap sufficiently, the error of this apgrid. Naively, each element should have a circulation
proximation isc?(o) if oj=o0 for all i. This error is not an Y= F(X)AXAL= —[ U’ (X) - V]wg(X) AX AL, (14)
interpolation error due to having a finite number of elements ) ) ) )
but rather a regularization error. As one refines the grid  Wherex is the location on a grid node, an, is the area of
the limit asAx; grows small and the number of basis func- the grid. As discussed in the previous subsection, each ele-
tions grows largg the initial conditions of the computation Mentis Gaussian .of finite thlcknggs, and the_mtwnve choice
would converge to of f in Eq. (14) will result in a finite regularization error.
o However, since the forcing function is not knowrpriori, as
f f F(x') 1 ex;{ B [x=x'| )dx’ ) is the case with the initial conditions, an exact deregulariza-
4ara? 40° ' tion is not possible.
However, there is another choicefofdifferent from Eq.(8), . _Th!,s prob_lem is solved with an approximate d_eregular-
ization” applied locally. A local deregularization is where

that cancels the regularization error. the function—[u’ (x) - V]wo(xy) is locally expanded as
The procedure, referred to as “deregularization,” takes K 03k y exp

advantage of the fact that certain functions can be expressed
as regularizations of other functions. For example, the simlY
plest example would be that a Gaussian function of width )
oo can be expressed as a regularization of a Gaussian func- ‘{_ X=Xl

tion with width o4 regularized with basis functions of width 4(1+vt)

Vog—oi. Itis also possible to deregularize the function 5ying advantage of the fact that the base state is known.

wo(x,0)+ w’(x,0). In particular, by choosing This function can be deregularized similar to the initial con-
ditions:

|x—x;|?

40'i2

00 (=% + X =xd*)] g

, (15

f(x)

)
= 2
A (1=09) 1+(1_02)2 [X|? cog26)

X2
X e —
R 21-9)
This f will yield the exact initial conditions subject only to
interpolation errors.

f(x)=

’ . 2
u’(x)-x F{ |X] . ae

8m(1+ vt—0?)? exp - 4(1+ vt—o?)

. (10

The major difference is that the formula assumes thatoes
not vary much over the numerical length scale

C. Verification of nonlinear calculations

We have addressed three distinct concerns that encom-
pass our numerical experiments. First, both numerical meth-
The vorticity is approximated by a linear combination of ods used to calculate our solutions are self-consistent. That
Gaussian basis functions that convect with the velocity deis, as numerical parameters were refined, our solutions con-
termined from the base state and the basis functions via theerged to a solution, resolving all appropriate length scales.
Biot—Savart law. The viscous term is approximated by al-Since CCSVM has been shown to be uniformly convergent
lowing the basis functions to spread: to Eq. (1), this was simply a matter of conducting a refine-
0 —11N Cx ment study. Secqnd, for smad, Fhe perturbatiye soluti.on
}E RANEANN agrees with detaileék=2 mode linear calculations. Third,
1 0Jj 2m |Xi_xj| the two methods are consistent with one another for l@ge
(11) Unfortunately, after several turnover times, it is not clear
(12) from our measurements whether or not we are resolving the
small length scales necessary to observe shear-diffusion de-
Systematically, single wide elements split into thinner ele-cay. Whether it is numerical errors in the calculation or sys-
ments to maintain numerical consistency in a process callettmatic errors in our ability to determine the asymptotic tri-
adaptive spatial refinemeneffectively diffusing vorticity  pole state(see Sec. IYis not clear. Regardless, these three
across streamlines. Thus computational elements are codetailed studies verify our numerical results, most particu-
tinually spreading, splitting into configurations of thinner el- larly our decay measurements, during the beginning and in-
ements, and then spreading again. To control problem sizégermediate stages of relaxation.

B. The vorticity computation

).(i:

1—exr( _ |Xi_xj| )
=1 4o

“2
gy =v.
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Decay of Nonaxisymmetric Enstrophy Radial distribution of nonaxisymmetric vorticity.

Refinement study at Re=1000 Norm of k=2 azimuthal Fourier mode at t=250.

1.0 r . 0.0008 T T T

—— Reference L— Linear

~~~~~~~~~~~~ Coarsened temporal resolution| 0.0006 o Low amplitude nonfinear |
08 F - - - - Coarsened spatial resolution =

$ 0.0004 .
0.0002

0.6 b

0.0000
0

En
N
N
[o2)
[+2]

04 1 f

0.2 -

0.0 . .
0.0 200.0 400.0

FIG. 2. Nonaxisymmetric enstrophy decay #+0.25 while spatial resolu-
tion | and the viscous timestept, are varied by a factor of 0.2 and 0.5,
respectively. Even with if the spatial resolution is 20% coarser or the tem-
poral resolution is 50% coarser, there is little noticable difference in non-
axisymmetric enstrophy decay.

FIG. 3. Top: The radial distribution of nonaxisymmetric vorticity tat
=250 for the linear and low amplitudé5=0.02 nonlinear simulation.
llc(r)|| is the Fourier amplitude as a function of Below: The vorticity
To make sure that our finite amplitude nonlinear Simu-distributions for the lineafleft) and nonlineasright) simulations show very

lations were resolved and self-consistent, we performed stamtose correspondence. The contour interval is<16™*.
dard refinement studies. The system of ordinary differential
equations described by Eg4.1) and(12) are solved using a

second-order Adams—Bashforth scheme. The time Step Wagoken. This is evident near the origin where zero contour
reduced until uniform variations in the vorticity distribution pirrcates in the linear simulation but does not in the nonlin-
dropped below 0.01 at=250. The Lagrangian techniqué g5 simulation. In the nonlinear calculation, the positive

described above has two spatial numerical parameters. Thgpes have migrated slightly inward and the negative lobes
first parameter is the maximum length scdlein the calcu-  gre gisplaced slightly outward. However, the nonlinear simu-
lation so thaio;<I for all computational elements. The sec- 4tion does preserve the reflection symmetry of the positive
ond parameter is nondimensional and governs the accuragiyg negative vorticities individually. Most significantly, we
of the spatial refinement Whejnizl._ However, this param- - can compute thé=2 azimuthal mode amplitude from the
eter can also be expressed as a timescale calledisbeus  spjinear simulation and compare it to its linear calculation.

time step At. The viscous time step is the period of time a again, the agreement is quite sound. The deviations between
computational element travels between refinement processgfe curves can be attributed to spliting errgmoth time

Thus a resolved calculation should have a relatively smalljiscretization and spatial regularizatjoflom the perturba-
variation in nonaxisymmetric enstrophy decay as the Viscougye method.

time step is decreased. In Fig. 2, one can see that refinement
of the spatial parameters does not substantially alter the en-
strophy decay. Thus assured that we had resolved the spatial
and temporal evolution, we calculate the decay of the per
turbed monopole over a range of Reynolds numbers and an
plitudes.

The numerical parameters of the experiment must b
sufficiently fine to resolve all the important structures in the
decaying monopole. The most obvious qualitative compari
son can be drawn from linear results. In this case, simulatin
Eq. (5) for a small value ofs should yield similar results to
the linear equations. Since the linear equations describe tf
evolution of a single Fourier mode, they are solved spectrall
on a very fine grid and are fully resolved. In Fig. 3, a com-
parison is made between a linear calculation and low ampli-
tude (6=0.02 nonlinear calculation. Visually, one can see FIG 4. Compariso_n of perturbed vorticity calculatiofhsft) to direct vor-
that they are quite similar, although some onlinear effectd™ Secualionsiratt, Even o e vauee o and ereore e
are still present in the low amplitude simulation. In particu- eyolution almost as well as the direct simulation. If #és the error be-
lar, the symmetry between positive and negative vorticity isween these two fields, thdie|.. /[|wo|..=0.056 and|e||, /[ wo|,=0.044.
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finest scales of our simulation may not be quite fine enough
] ] ! ! to capture shear diffusion mixing. This is evident in Fig. 5

Comparison between linear and nonlinear calculations at Re=10"4 . . . .

10 . . . wherein we compare the nonaxisymmetric enstrojig-

— Linear calculation cussgd further in the qext sgcti»o‘or linear dgcfay with a low

—-~ Nonlinear caloulation, 3=0.02 | amplitude nonlinear simulation. However, it is clear that the

nonlinear simulations are capturing a monotonic decay in

close agreement to the linear simulation. The second prob-

lem is that we lack an analytic or numerical solution to the

Decay of Nonaxisymmetric Enstrophy

08 -

0.6

N \ tripole attractor. Indeed, as we shall see later, the tripole is
04t \ 1 not even steadily rotating, and there are some small radial
\\ oscillations as well. Thus, measuring the decay relative to a

02l N i quasi-steady structure is somewhat problematic although we
. do propose a technigue that captures some of these effects.

0.0 ‘ T A. Measurements of decaying structures in
0.0 200.0 40{)‘0 600.0 800.0 Corotating frames

When studying decay toward an attractor, it is necessary
FIG. 5. A comparison between the nonaxisymmetric enstrophy of linear anqo first know the structure of the attractor. In the case of the
nonlinear monopole relaxation simulations. The linear simulation uses i - ) .

linear spectral code capable to resolving shear-diffusion spatial scalesin€ar stability of the Lamb monopole, there is an eX_aCt So-

CCSVM is a fully nonlinear code, but cannot resolve the very fine spatiallution to the stable structure. In the case of the quasi-steady
scales necessary for shear-diffusion mixing as well as the linear spectrthme’ we lack an exact solution. Even moving into a frame
simulation. that is rotating with the tripole, there are slight radial oscil-
lations in the negative inclusions. In fact, we shall see later

To determine the limitations of the perturbative tech-that the tripole does not rotate steadily. Rather, the rotation

nique due to splitting and regularizations error, we calculatedate varies slightly with time. Thus measuring the rate of
the same flow with both perturbative and direct methods at decay of this quasi-steady object is problematic. In this sec-
large value 0f5=0.25. At large values o, one would ex- tion, we propose a new technique for measuring decay rates
pect the performance of the direct method to improve ovepf structures like the tripole.

that of the perturbative method entirely due to splitting er-  Although nonaxisymmetric enstrophy is an appropriate
rors. In Fig. 4, the slow exponential growth of the splitting duantity for measuring relaxation to axisymmetric attractors,
errors is evident but manageably small relative to the totalt Would not be appropriate for general vortical structures

nonaxisymmetric enstrophy decay. because the attractor might not have axisymmetric stream-
lines. To measure the relaxation in a quasi-steady rotating

IV. ANALYSIS OF RELAXATION TOWARD THE object where the streamlines of the attractor are not known,

MONOPOLE AND TRIPOLE ATTRACTORS we move to the frame rotating with the structure. Melander,

. . . McWilliams, and Zabusky used a similar method of analysis
Our relaxation experiments examine monopole relax;

ation ass and Re vary. We examined monopole relaxationto study their top-hat elliptical vorticés.If one knows the
) angular velocity (), for the attractor, one can determine the
for 6=0.02, 0.1, 0.25 at Rel0" to see the effect of the 9 yAd

. . ) corotating stream function and its associated velocity field:
nonlinearity on the base state. Also, we examined- R&, g Y

2.5x10°, 5.0<10%, 7.5<10°, and 10 when §=0.25 to ob- — (X1 +20=V2,,, 17)

serve how viscous diffusion affects perturbed monopole evo-

lution. This section describes and discusses our two main

conclusions. First, perturbed Lamb monopoles do not neces- Urot—

sarily return to a state of radial symmetry. For sm&a(D.02

and 0.3, the positive and negative aspects of the disturbanc€onvection across corotating streamlines associated with

mix together and negate one another, leaving the originahnixing would then be measured through,- Vo, the con-

Lamb monopole essentially intact. However, for largevective term of the Navier—Stokes equations. Thus a natural

enough é (0.29, the initial tripolar structure undergoes a relaxation measurement is tikenvective orthogonality

period of reorganization that leaves the negative inclusions

intact. The second conclusion is that the nonaxisymmetric Fo J’zwf‘” (Ut Vo) cdr do (19

tripole resulting from a moderate disturbance is robust and “Jo Jo [uzdl '

only slowly decays through viscous diffusion. As we de-

crease the Reynolds number, we decrease the lifetime of tHéormalization of the velocity field is essential because we

tripole because viscosity erodes the negative inclusions. only wish to measure vorticity transport across streamlines
Our greatest frustration is that we do not observe rapicand ¢,,; grows quadratically irr. If the vortex structure is

shear-diffusion mixing in the tripolar attractor. There are twosteadily rotating or even ) changes slowly with timéi.e.,

possible reasons why this is the case. The first is that numeriecally steadily rotating one would expecE—0 ast—x

cal errors within our nonlinear simulation hinder our ability physically. For calculations, there would be some floor value

to measure an effect which is itself quite small. That is, theat which one observes numerical errors.

Ix

Prot- (18
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Since these measurements rely on knowing the base
state’s angular velocit§), we developed a consistent com-
putational technique for determining a local rotation rate for
the vortex structure. Since an exact solution to the tripole
base state is not known, we computed the rotation rate lo-
cally using second moments. The zeroth and first moments
of the tripole structure are conserved both physically and
numerically and so cannot provide any relevant information
about the angular orientation of a structure. However, the
individual second moments evolve with time and, from this
information, we can determine the rotation rate.

Using second moments, we determined the angular ve-
locity of the evolving tripole with centered differences. Sup-
pose we measure the following quantities:

Variations in Local Angular Velocity

0.0160

0.0140

0.0120 -

0.0100 -

0.0080

. .
0.0 500.0 1000.0 1500.0

mxx(t)=J J X2w(r,0,t)r dr d#, t
FIG. 6. Slow evolution of) for the tripolar attractor. Although only com-
prising a portion of the total angular velocity, significant variation§liare

observed fors=0.25 and Re=10*. The angular velocity(), is determined
using Eq.(22).

mxy(t)zf fxyw(r,e,t)r dr da, (20

myy(t):f jyzw(r,e,t)r dr dé.

There are three unique second moments corresponding to théndering measurements of relaxing toward the tripole attrac-
three coefficients of a two-dimensional quadratic form. If thetor. This oscillation in the aspect of the structure may be
structure is rotating steadily with angular velocity then connected to a similar oscillation in the axisymmetrization
experiments Melander, McWilliams, and Zabusky measured

M) 2myy (1) Myy(t) with “diagnostic ellipses.** However, it is important to
Myy(t)  Myy(t) —Myu(t)  —myy(t) note that these previous experiments study the axisymmetri-
myy(t) = 2my(t) My(1) zation of top-hat elliptical profiles which are more akin to
Kirchoff vortices than more generic continuous distributions
cos(QAt) Myx(t+At) of vorticity where shear diffusion will be present. The sec-
X | sin(QAt)cog QAL) | =| my (t+At) | (21)  ond observation is that, while our simulations can capture the
SiIP(QAL) myy(t+At) initial stages of the relaxation where the perturbation be-

comes sheared and stretched to fine scales, either radial re-
distribution in the tripole or numerical noise affects our mea-
urements before shear-diffusion mixing can occur.
Ithough we cannot isolate an asymptotic decay timescale,
we can identify the strong nonlinear, inviscid mixing mecha-

Thus to uniquely determine the three quantitiess, sir?,

and cos sih of interest based on the three moments, it is
necessary to solve this three by three system. This linea
system is easily inverted yielding a local value @f As a
diagnostic, we calculated Z{f)At)+coS(QAt) as the per-

turbed monopole evolved and found that this residual devi
ated from unity by less than 0.1% during the simulation. On

subtlety in solving this problem is that it is best to compute

nism as we vary Re.
Nonlinear interactions manifest themselves in several
different ways as the perturbation relaxes. The nonlinear in-

e

teractions radially redistribute the axisymmetric mode so that

Q=tan? sm(SZOAS;z;oAS(t())At)-/(At) (22
rather than
Ot SirP(QAt) /(At)
| SiN(QAt)cog QAtL)
because\t is small and the latter will induce large numerical

errors.

B. Quasi-steady tripoles and local negation of shear
diffusion

Our first observation in measuririg is that the rotation
rate of the tripolar attractor is not steady. In Fig. 6, one canF
see that even,aﬁer the t”POIe rglax,es to a quasi-steady Stl’utcating with the tripole and the perturbed vorticity}, (right) att=500. The
ture, the rotation rate varies with time. Furthermore we 0bzngular velocity of the tripole(), is observed to be @620. The vorticity

serve subtle radial motion in the structure, as well furthercontour interval is 5.8 10" 2.

IG. 7. The stream functionj,, (left) for =0.25 forw in a frame coro-
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FIG. 8. Gradual erosion of tripole structure as the Reynolds number decreases: As one can see from these snapshots of moderatdl§=E&Hrbed
monopole disturbances, for a fixed time the structure gradually erodes as one increases the Reynolds number. From left te1G3h&REC® and
10*. The vorticity contours are the sani&.25x 10~ 2 per division throughout the sequence.

the symmetric part of the total vorticity field is no longer a of the tripole, the tripole is still robust, meaning that both
Lamb monopole. This structure, once created, relaxes slowlghysical and computational disturbances to the structure are
on the Re timescale. Next, the negative vorticity inclusionsattenuated by some mechanism. One possible explanation is
can create a critical separatrix and closed streamlines, couthe shear-diffusion mechanism.
teracting shear diffusion in certain regions of the flow corre-  Eventually, viscosity transports vorticity across closed
sponding to the negative vorticity inclusiorisee Fig. 7. streamlines. In particular, positive vorticity will mix into the
Thus it is impossible for the shear diffusion to eradicate thenegative inclusions. In Fig. 8, one can see the effects of
negative inclusions while stripping can occur outside thiserosion at different Reynolds numbers. Since the structure is
separatrix. We suspect that this mechanism is responsible fouasi-steady and vorticity is diffusing solely across stream-
coherence of the tripole. In a sense, the fundamental probletimes, we would expect to see the tripole relax on a slow Re
reduces to studying the stability of simpler structures in sheatimescale(see Fig. 9. There is some retardation at the lower
flows. The stability of elliptical vortex structures in shear Reynolds numbers because the negative vorticity has dif-
flows has been studied by Kida, and Moore, andfused more substantially into the monopole. At=Ri®, one
Saffman?®?! However, the instability of an elliptical form can no longer observe negative contourst 5y600.
does not imply a lack of coherence of a more general struc- It is clear that the Gaussian monopole is the asymptotic
ture. Similarly, Mariotti, Legras, and Dritschel have studiedstructure for these experimentstas« because the negative
the stripping of vorticity by cooperative and adverse shearingnclusions are vanishing relative to the base state. Even if
as a critical mechanism in vortex erosion although they alsthere were a persistent viscous tripole solution, one would
found that viscous diffusion greatly enhances erofon. expect it to be unstable to external disturbanceg-ase
While nonlinear interactions would prevent shear-because the negative inclusions would drop below any given
diffusion mixing between the negative inclusions and the resvalue for large time. However, the existence of viscous tri-
pole solutions for all time remains an open question.

Decay of tripole structure

Comparison of absolute maximum and minimum vorticities
0.20 T T T T

V. CONCLUSIONS

In this paper, we describe in some generality how per-
turbed monopoles will evolve toward one of two distinct
attractors. The monopole attractor is already well under-
stood, but the tripole attractor remains elusive. While these
%2 tripoles are robust to moderate perturbations, it is not clear

oRe=10
oRe=6X10°
©Re =10

e}
L 89
0.10 3

0.05 -

Ratio of minimum to maximum o

0.00 - .
0.00 0.10 0.20

t/Re

FIG. 9. Reynolds number timescale decay of the ratio between the maxi
mum vorticity and minimum vorticity. While there is some initial reorgani-

0.30 0.40

what the asymptotic structure is. While we speculate that the
asymptotic structure would correspond to an alignment be-
tween vorticity contours and streamlines, there is no defini-
tive evidence that this is the case. Finally, we propose a
technique for measuring the decay of perturbations to the
speculative asymptotic state.

The observation of this tripole attractor contradicts the
natural assumption that concentrated regions of vorticity
where the field is dominated by positiver negative vortic-
ity will rapidly relax to an axisymmetric state. For instance,

zation, the asymptotic tripoles at various Reynolds numbers decay in a simSOMe investigators have assumed that vortex sheets will roll

lar manner.
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up and aggregate into an axisymmetric core regtonhile
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