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Quasi-steady monopole and tripole attractors for relaxing vortices
Louis F. Rossi
Mathematical Sciences Department, University of Massachusetts, Lowell, Massachusetts 01854

Joseph F. Lingevitch
Naval Research Laboratory, Washington, D.C. 20375

Andrew J. Bernoff
Department of Engineering Science & Applied Mathematics, Northwestern University, Evanston, Illinois
60208
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Using fully nonlinear simulations of the two-dimensional Navier–Stokes equations at large
Reynolds number~Re!, we bracket a threshold amplitude above which a perturbed Gaussian
monopole will relax to a quasi-steady, rotating tripole, and below which will relax to an
axisymmetric monopole. The resulting quasi-steady structures are robust to small perturbations. We
propose a means of measuring the decay rate of disturbances to asymptotic vortical structures
wherein streamlines and lines of constant vorticity correspond in some rotating or translating frame.
These experiments support the hypothesis that small or moderate deviations from asymptotic
structures decay through inviscid and viscous mixing. ©1997 American Institute of Physics.
@S1070-6631~97!02708-6#

I. INTRODUCTION

Laboratory experiments and numerical simulations of
two-dimensional, large Reynolds number~Re! flows reveal
the existence of isolated, long-lived vortical structures such
as monopoles, dipoles, and tripoles.1–3 In this article, we
study the evolution and relaxation of an axisymmetric
Gaussian monopole perturbed by a quadrupolar vorticity dis-
turbance of weak-to-moderate amplitude. We find that for
sufficiently small amplitude nonaxisymmetric distortions, the
perturbed monopole relaxes to an axisymmetric state, but for
larger initial distortions, the vortex relaxes to a quasi-steady
rotating tripole~see Fig. 1!. Furthermore, we find that these
tripole structures are robust to small disturbances. These nu-
merical results highlight the existence of monopole and tri-
pole attractors at large Reynolds numbers, and we suggest
shearing and diffusion may even enhance the rate at which
the perturbed initial conditions approach these attractors.
They also suggest the existence of a perturbation threshold
which separates the monopole and tripole domains of attrac-
tion.

The decay rate of vortical structures toward an attractor
is associated with the homogenization of disturbances
through mixing. If disturbances to one structure are mixed
more efficiently than for another structure, the former will
relax much more quickly. In the experiments described in
this paper, we increase the amplitude of the disturbance to a
point where mixing no longer occurs across the entire mono-
pole. When this happens, we find that disturbances are not
homogenized in some regions. Rather, part of the distur-
bance persists with the original monopole, yielding a com-
pletely different stable attractor called a tripole.

The simultaneous shearing and diffusion of vorticity
governs the intermediate timescale (Re1/3) relaxation of per-
turbed monopoles and, we suspect, tripoles. Rhines and
Young studied the shear-diffusion mechanism in their analy-
sis of the mixing of a passive scalar in a region of closed

streamlines.4 They showed that shear steepens concentration
gradients across streamlines which are then smoothed by dif-
fusion, homogenizing the concentration along streamlines on
the Pe1/3 timescale, much faster than the Pe diffusive time-
scale~Pe is the Pe´clet number!. Recently, we incorporated
this mechanism into the linear stability theory for an axisym-
metric monopole.5 This analysis shows that a linearly per-
turbed monopole relaxes to an axisymmetric state on the
shear-diffusion timescale (Re1/3). Unfortunately, measuring
decay toward a quasi-steady, nonaxisymmetric structure,
such as the tripoles observed in our experiments, is problem-
atic because there is no direct way to measure the distance of
an evolving state from the asymptotic state without an
asymptotic solution. This contributes to our failure to differ-
entiate between the Re timescale and the Re1/3 timescale.
However, we do formulate a consistent measurement tech-
nique that can measure the decay to a certain point in the
evolution of the nonaxisymmetric structure.

Tripoles have been observed in numerical and laboratory
experiments of decaying turbulence and dipole–dipole colli-
sions for some time.2,6,7–10Our full nonlinear simulations of
distorted axisymmetric monopoles suggest that shear-
diffusion mixing governs the relaxation toward the tripole
attractor for a moderate perturbation just as it would toward
the monopole attractor for slight perturbations. In the case of
the tripole, the positive portion of the quadrupolar distur-
bance is thoroughly mixed, while the negative portion per-
sists to form a quasi-steady rotating tripole. The persistence
of the negative portion of the perturbation is due to the cre-
ation of a separatrix of the streamlines in a frame rotating
with the vortical structure by the perturbation vorticity. The
effect of this distortion is to nullify the shearing of the nega-
tive vorticity inclusions by the background velocity field.
Therefore, shear-diffusion mixing cannot occur between the
negative inclusion and the rest of the structure. A similar
inviscid experiment with an elliptical top-hat vorticity profile
indicated rapid axisymmetrization in the sense described ear-
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FIG. 1. A perturbed monopole relaxes toward a tripolar attractor if the perturbation~d50.25! is strong enough. The full vorticity field is on the left, the
perturbation relative to the Lamb monopole base state is in the center, and the corotating stream function~see Sec. IV! is on the right. Time increases from
top to bottom. The contours are remain constant throughout the series~5.031022 per division~left! and 1.2531023 per division~middle!. Dotted contours
are negative.! The final structure persists for the remainder of the simulation.
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lier, but since there was no negative vorticity, there could be
no local disruption of shear within the structure.11 The rami-
fications of this work are that nonaxisymmetric perturbations
to a stable monopole may not decay back to the base state, as
some investigators have assumed in both analytic and nu-
merical work.12–14

II. MIXING IN VORTICAL STRUCTURES

Large Reynolds number flows exhibit the emergence and
persistence of a variety of vortical structures.2,3 Quasi-steady
vortices are those that maintain approximately the same vor-
ticity distribution in some appropriate reference frame for
many turnover times and evolve solely through viscous dif-
fusion on a slow~Re! timescale. Fundamental examples are
monopoles~stationary!, dipoles ~translating!, and tripoles
~rotating!. Viewed in their respective reference frames,
quasi-steady vortices are characterized by the approximate
alignment of their vorticity contours and streamlines:
u•¹v'0. It is known that mixing in regions of closed
streamlines may greatly enhance the effectiveness of diffu-
sion in homogenizing passive tracers along streamlines.4

Similarly, mixing has also been shown to enhance the decay
of nonaxisymmetric disturbances to axisymmetric
monopoles.5 In this section, we examine how mixing in re-
gions of closed streamlines may effect the relaxation of a
perturbed vortex to a stable quasi-steady state. First, we il-
lustrate the mechanism of shear-diffusion mixing in the con-
text of the large Reynolds number linear stability of an exact
monopole solution to the Navier–Stokes equations, the
Lamb monopole. Then, we speculate on how mixing applies
more generally to vortices and formulate several numerical
experiments to investigate the extent and limitations of mix-
ing in vortices. In the next section, we discuss the results of
our numerical simulations.

The large Reynolds number stability of the Lamb mono-
pole illustrates how mixing enhances the decay of nonaxi-
symmetric disturbances to a axisymmetric monopole much
quicker than the viscous timescale. Below, we formulate the
large Reynolds number~Re@1! monopole problem that we
solve numerically in Sec. III. We are studying the evolution
of a two-dimensional, incompressible flow which is de-
scribed by the Navier–Stokes equations

] tv1u•¹v5
1

Re
¹2v, ~1!

wherev is the total vorticity,u is the velocity field related to
the vorticity through the Biot–Savart integral, and Re is the
Reynolds number, which for our experiments is defined to be
the total circulation divided by the viscosity.15 An exact,
self-similar, axisymmetric solution of Eq.~1! is the Lamb
monopole,

v0~x,t !5
1

4p~11t/Re!
expF2

uxu2

4~11t/Re!G . ~2!

This Gaussian vortex is exponentially localized and spreads
radially on the viscous timescale (Re21) through viscous dif-
fusion. The Lamb solution serves as a canonical example of
an axisymmetric large Reynolds number monopole and is the

basic state which we perturb with nonaxisymmetric distor-
tions. In fact, all axisymmetric monopoles will relax to a
Gaussian monopole ast→`.16 However, while shear diffu-
sion plays no role in axisymmetric vortex evolution, it may
significantly affect the relaxation of nonaxisymmetric pertur-
bations to the monopole. To examine the decay of a nonaxi-
symmetric perturbation to a Lamb monopole, we define the
nonaxisymmetric enstrophy of the monopole:

En5E @v~x!2^v~ uxu!&#2dx, ~3!

^v~ uxu!&5
1

2p E
0

2p

v~x!du. ~4!

This is a natural quantification for axisymmetric structures
because it represents theL2 norm of the nonaxisymmetric
portion of the vorticity field. Using this measurement, the
linear stability theory for a Lamb monopole was examined in
a previous paper.5 Below, we briefly review the main results
of the stability theory as a motivation for our study of finite
amplitude distortions to Gaussian monopoles. To study the
relaxation of more general perturbed quasi-steady vortices,
the nonaxisymmetric enstrophy is not the appropriate mea-
surement for quantifying the deviation of the vorticity from
its quasi-steady state. In Sec. IV, we formulate a more gen-
eral technique that measures decay relative to corotating vor-
tical structures.

To study perturbed monopoles, it is useful to incorporate
the Lamb solution into Eq.~1! and to obtain an equation for
the perturbation vorticity. The total vorticity is written as a
sum of the Lamb solution,v0 , and a perturbation,v8. The
evolution ofv8 is governed by

] tv81u0•¹v81u8•¹v01u8•¹v85
1

Re
¹2v8, ~5!

whereu0 , u8 are the velocity fields induced by the Lamb
monopole and perturbation vorticity, respectively. The linear
stability equation follows from Eq.~5! by neglecting the qua-
dratic nonlinear term~u8•¹v8!.

Shear-diffusion mixing of vorticity perturbations in the
Lamb monopole is qualitatively similar to the mixing of pas-
sive scalars in shear flows, first studied by Rhines and
Young.4 A passive scalar obeys a similar advection diffusion
equation@i.e., Eq.~5! linearized and neglecting theu8•¹v0

term#. A nonaxisymmetric initial distribution of vorticity~or
passive scalar! is sheared by differential rotation in the
monopole. Diffusion between the sheared layers homog-
enizes the vorticity~or passive scalar! along streamlines on
the shear-diffusion timescale Re1/3 ~or Pe1/3, where Pe is the
Péclet number!. In linear theory, a general vorticity pertur-
bation is decomposed into three independent components:
axisymmetric, translational, and the portion which is or-
thogonal to the axisymmetric and translational components.
The axisymmetric portion of the disturbance radially diffuses
on the Re timescale, analogously to the base state. The trans-
lational piece represents a small displacement of the vorticity
centroid of the monopole and is conserved. The remaining
portion of the perturbation decays on the shear-diffusion
(Re1/3) timescale. Note that the decay timescale, (Re1/3), is
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asymptotically ~i.e., as Re→`! faster than the viscous
spreading of the monopole~Re!. A linearly perturbed Gauss-
ian vortex will therefore become axisymmetric on the shear-
diffusion timescale, much quicker than the Lamb monopole
diffuses. The result of the Lamb monopole linear stability
analysis is that the shear-diffusion mechanism attenuates the
residual portion ~i.e., nonaxisymmetric, nontranslational
component! of the vorticity perturbation on the Re1/3 times-
cale at a rate proportional ton2, wheren is the azimuthal
wave number of the disturbance.5

The shear-diffusion mixing mechanism fails in the re-
gions where shear vanishes such as translation or solid body
rotation. In this case, there is no differential rotation between
neighboring streamlines. The Kirchoff elliptical vortex
patches fall into this category. Another limitation of shear-
diffusion mixing is that the perturbation vorticity may quali-
tatively alter the stream function so that shearing due to the
base state is insufficient to mix the vorticity. In the next
section, we see an example of this as the perturbation ampli-
tude to a monopole is increased beyond a threshold, and the
vortex relaxes to a quasi-steady tripole rather than a mono-
pole.

To determine the extent and limitations of shear-
diffusion mixing in perturbed monopoles, we numerically
simulate finite amplitude distortions to the Lamb monopole.
The linear stability theory discussed above is applicable to
large Reynolds numbers; numerical solutions of the linear-
ized equation show good agreement with large Reynolds
number (Re5104) asymptotic scaling.5 The numerical simu-
lations discussed in this paper have Reynolds number be-
tween Re5103 and Re5104. Our numerical simulations are
for finite amplitude quadrupolar perturbations to a Lamb
monopole. The initial vorticity disturbance is given by

v8~x,0!5
d

4p
uxu2 expS 2

uxu2

4 D cos~2u!, ~6!

whereu is the argument ofx. We note that although we refer
to the perturbed vortex as a distorted monopole, it is also
accurate to say that the initial state is a tripole with strength
proportional to d. When d is small, the nonlinear term,
u8•¹v8 is of higher order in Eq.~5!, and the evolution of the
perturbed monopole is dominated by linear effects and de-
cays on the Re1/3 timescale as discussed above. we chose to
study then52 azimuthal fourier mode because this pertur-
bation is the slowest decaying fourier mode, with the excep-
tion of portions of them51 mode that are orthogonal to a
translation ofv0 .

In this section, we have described how mixing may
modify the inviscid dynamics of perturbed quasi-steady vor-
tex on the Re1/3 timescale due to the shear-diffusion mecha-
nism. This means for large Reynolds number flows, viscosity
may enhance the equilibration to a quasi-steady state much
faster than the Re timescale. We expect shear to create small
scale structures which are annihilated by viscosity. Also, we
have discussed how shear is essential for this rapid mixing
process so that one might expect only viscous diffusion to
act in regions where there is little or no shear.

III. THE MONOPOLE RELAXATION EXPERIMENTS

We simulated the evolution and morphology of the per-
turbed monopole using the corrected core spreading vortex
method~CCSVM!.17 However, we implemented two differ-
ent versions of it for different regimes. One version directly
solves Eq.~1!; the other solves Eq.~5!. Whend is large and
the perturbation is comparable to the unperturbed Lamb
monopole, we directly simulated the full vorticity field. The
disadvantage to a direct simulation is that the full field,v0

1v8, is calculated, ignoring the fact an exact solution for
v0 is known. Thus numerical errors will accumulate in both
fields. The principle advantage is that the direct calculation
has no operator splitting for reasons that will be discussed in
greater detail in the following paragraphs. In contrast to the
direct method, approximating the perturbation equation~5!
and using the exact solution forv0 allows numerical errors
to grow only in v8. A similar perturbative technique has
proven successful in boundary layer calculations.18 Sincev8
is O ~d! andv0 is O ~1!, this method is effective for small
values ofd. However, an additional spatial error is intro-
duced in the perturbative method because the split step
scheme is used.

The Lagrangian vortex formulation is a natural one for a
detailed study of high Reynolds number monopole relaxation
for several reasons. First, the moving basis functions are free
to convect anywhere in the domain when approximating the
expulsed spiral arms of vorticity. Second, the boundary con-
ditions for an isolated monopole are naturally satisfied. Spec-
tral calculations would simulate the relaxation of a periodic
array of monopoles. Finally, the corrected core spreading
method incorporates true viscous diffusion rather than artifi-
cial dissipation such as the more controversial hyperviscosity
(¹4).19

As discussed in Sec. II, shear and diffusion play a crucial
role in monopole relaxation for infinitesimal perturbations.
Clearly, the Re1/3 relaxation time is much faster than the Re
diffusion timescale, but more importantly, the fast relaxation
scaling depends strongly on thetype of diffusion. In this
case, the appropriate type of diffusion would be viscous dif-
fusion n¹2v. Intuitively, simulations using hyperviscosity
would result in Re1/5 decay rather than the physically correct
Re1/3 for linearized simulations.4 Specifically, if one studies a
simple model problem of a passive scalar in a simple shear
flow, the exact solution will decay on the Re1/5 timescale for
hyperviscosity. More generally, hyperviscosity will balance
the shear terms in the Navier–Stokes equations at the same
order (Re1/5). Other forms of dissipation such as those used
in contour surgery techniques have not been quantified in the
literature, and we do not pursue its application in this article.
Although we are studying high Reynolds number flows
where the shear-diffusion mechanism is applicable, it is cru-
cial that the numerical dissipation is accurate at the correct
order.

A. Exact initial conditions

Initially, the vorticity field is approximated as a linear
combination of Gaussian basis functions:
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v~x!5(
i51

N
g i

4ps i
2 expS 2

ux2xi u2

4s i
2 D . ~7!

The positions of the basis functions are arranged on a regular
grid to approximate the initial vorticity fieldv0(x,0)
1v8(x,0). The most direct way to assign circulations to the
basis functions is

g i5 f ~xi !Dxi5@v0~xi ,0!1v8~xi ,0!#Dxi , ~8!

whereDxi is the area surrounding mesh nodexi . Assuming
that the Gaussians overlap sufficiently, the error of this ap-
proximation isO ~s! if s i5s for all i . This error is not an
interpolation error due to having a finite number of elements
but rather a regularization error. As one refines the grid~in
the limit asDxi grows small and the number of basis func-
tions grows large!, the initial conditions of the computation
would converge to

E E f ~x8!
1

4ps2 expS 2
ux2x8u2

4s2 Ddx8. ~9!

However, there is another choice off , different from Eq.~8!,
that cancels the regularization error.

The procedure, referred to as ‘‘deregularization,’’ takes
advantage of the fact that certain functions can be expressed
as regularizations of other functions. For example, the sim-
plest example would be that a Gaussian function of width
s0 can be expressed as a regularization of a Gaussian func-
tion with width s1 regularized with basis functions of width
As0

22s1
2. It is also possible to deregularize the function

v0(x,0)1v8(x,0). In particular, by choosing

f ~x!5
1

4p~12s2! F11
d

~12s2!2
uxu2 cos~2u!G

3expF2
uxu2

4~12s2!G . ~10!

This f will yield the exact initial conditions subject only to
interpolation errors.

B. The vorticity computation

The vorticity is approximated by a linear combination of
Gaussian basis functions that convect with the velocity de-
termined from the base state and the basis functions via the
Biot–Savart law. The viscous term is approximated by al-
lowing the basis functions to spread:

ẋi5F0 21

1 0 G(
j51

N
g i

2p

xi2xj
uxi2xj u2

F12expS 2
uxi2xj u2

4s i
2 D G ,

~11!

ṡ i
25n. ~12!

Systematically, single wide elements split into thinner ele-
ments to maintain numerical consistency in a process called
adaptive spatial refinement, effectively diffusing vorticity
across streamlines. Thus computational elements are con-
tinually spreading, splitting into configurations of thinner el-
ements, and then spreading again. To control problem size,

groups of overlapping elements are periodically merged
when this action induces a controllably small error.14

To calculate a solution to Eq.~5!, it is necessary to split
the operator by alternatively solving Eq.~1! for v8 rather
thanv, and then solving

] tv852~u8•¹!v0 ~13!

for one time step. Computationally, one integrates each
equation for one full time step. In this case, Eq.~13! is ap-
proximated by adding computational elements on a regular
grid. Naively, each element should have a circulation

gk5 f ~xk!DxkDt52@u8~xk!•¹#v0~xk!DxkDt, ~14!

wherexk is the location on a grid node, anddxk is the area of
the grid. As discussed in the previous subsection, each ele-
ment is Gaussian of finite thickness, and the intuitive choice
of f in Eq. ~14! will result in a finite regularization error.
However, since the forcing function is not knowna priori, as
is the case with the initial conditions, an exact deregulariza-
tion is not possible.

This problem is solved with an ‘‘approximate deregular-
ization’’ applied locally. A local deregularization is where
the function2@u8(xk)•¹#v0(xk) is locally expanded as

@u8~xk!•~x2xk!1O ~ ux2xku2!#
1

8p~11nt !2

3expF2
ux2xku2

4~11nt !G , ~15!

taking advantage of the fact that the base state is known.
This function can be deregularized similar to the initial con-
ditions:

f ~x!5
u8~x!•x

8p~11nt2s2!2
expF2

uxu2

4~11nt2s2!G . ~16!

The major difference is that the formula assumes thatu8 does
not vary much over the numerical length scales.

C. Verification of nonlinear calculations

We have addressed three distinct concerns that encom-
pass our numerical experiments. First, both numerical meth-
ods used to calculate our solutions are self-consistent. That
is, as numerical parameters were refined, our solutions con-
verged to a solution, resolving all appropriate length scales.
Since CCSVM has been shown to be uniformly convergent
to Eq. ~1!, this was simply a matter of conducting a refine-
ment study. Second, for smalld, the perturbative solution
agrees with detailedk52 mode linear calculations. Third,
the two methods are consistent with one another for larged.
Unfortunately, after several turnover times, it is not clear
from our measurements whether or not we are resolving the
small length scales necessary to observe shear-diffusion de-
cay. Whether it is numerical errors in the calculation or sys-
tematic errors in our ability to determine the asymptotic tri-
pole state~see Sec. IV! is not clear. Regardless, these three
detailed studies verify our numerical results, most particu-
larly our decay measurements, during the beginning and in-
termediate stages of relaxation.
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To make sure that our finite amplitude nonlinear simu-
lations were resolved and self-consistent, we performed stan-
dard refinement studies. The system of ordinary differential
equations described by Eqs.~11! and~12! are solved using a
second-order Adams–Bashforth scheme. The time step was
reduced until uniform variations in the vorticity distribution
dropped below 0.01 atT5250. The Lagrangian technique
described above has two spatial numerical parameters. The
first parameter is the maximum length scale,l , in the calcu-
lation so thats i, l for all computational elements. The sec-
ond parameter is nondimensional and governs the accuracy
of the spatial refinement whens i5 l . However, this param-
eter can also be expressed as a timescale called theviscous
time step, Dt. The viscous time step is the period of time a
computational element travels between refinement processes.
Thus a resolved calculation should have a relatively small
variation in nonaxisymmetric enstrophy decay as the viscous
time step is decreased. In Fig. 2, one can see that refinement
of the spatial parameters does not substantially alter the en-
strophy decay. Thus assured that we had resolved the spatial
and temporal evolution, we calculate the decay of the per-
turbed monopole over a range of Reynolds numbers and am-
plitudes.

The numerical parameters of the experiment must be
sufficiently fine to resolve all the important structures in the
decaying monopole. The most obvious qualitative compari-
son can be drawn from linear results. In this case, simulating
Eq. ~5! for a small value ofd should yield similar results to
the linear equations. Since the linear equations describe the
evolution of a single Fourier mode, they are solved spectrally
on a very fine grid and are fully resolved. In Fig. 3, a com-
parison is made between a linear calculation and low ampli-
tude ~d50.02! nonlinear calculation. Visually, one can see
that they are quite similar, although some nonlinear effects
are still present in the low amplitude simulation. In particu-
lar, the symmetry between positive and negative vorticity is

broken. This is evident near the origin where zero contour
bifurcates in the linear simulation but does not in the nonlin-
ear simulation. In the nonlinear calculation, the positive
lobes have migrated slightly inward and the negative lobes
are displaced slightly outward. However, the nonlinear simu-
lation does preserve the reflection symmetry of the positive
and negative vorticities individually. Most significantly, we
can compute thek52 azimuthal mode amplitude from the
nonlinear simulation and compare it to its linear calculation.
Again, the agreement is quite sound. The deviations between
the curves can be attributed to splitting errors~both time
discretization and spatial regularization! from the perturba-
tive method.

FIG. 2. Nonaxisymmetric enstrophy decay ford50.25 while spatial resolu-
tion l and the viscous timestep,Dt, are varied by a factor of 0.2 and 0.5,
respectively. Even with if the spatial resolution is 20% coarser or the tem-
poral resolution is 50% coarser, there is little noticable difference in non-
axisymmetric enstrophy decay.

FIG. 3. Top: The radial distribution of nonaxisymmetric vorticity att
5250 for the linear and low amplitude~d50.02! nonlinear simulation.
ic(r )i is the Fourier amplitude as a function ofr . Below: The vorticity
distributions for the linear~left! and nonlinear~right! simulations show very
close correspondence. The contour interval is 1.631024.

FIG. 4. Comparison of perturbed vorticity calculations~left! to direct vor-
ticity calculations~right!. Even for large values ofd and therefore large
amplitude forcing functions, the simulation of Eq.~5! captures the monopole
evolution almost as well as the direct simulation. If thee is the error be-
tween these two fields, theniei` /iv0i`50.056 andiei2 /iv0i250.044.

2334 Phys. Fluids, Vol. 9, No. 8, August 1997 Rossi, Lingevitch, and Bernoff

Downloaded¬02¬Mar¬2011¬to¬134.173.130.140.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://pof.aip.org/about/rights_and_permissions



To determine the limitations of the perturbative tech-
nique due to splitting and regularizations error, we calculated
the same flow with both perturbative and direct methods at a
large value ofd50.25. At large values ofd, one would ex-
pect the performance of the direct method to improve over
that of the perturbative method entirely due to splitting er-
rors. In Fig. 4, the slow exponential growth of the splitting
errors is evident but manageably small relative to the total
nonaxisymmetric enstrophy decay.

IV. ANALYSIS OF RELAXATION TOWARD THE
MONOPOLE AND TRIPOLE ATTRACTORS

Our relaxation experiments examine monopole relax-
ation asd and Re vary. We examined monopole relaxation
for d50.02, 0.1, 0.25 at Re5104 to see the effect of the
nonlinearity on the base state. Also, we examined Re5103,
2.53103, 5.03103, 7.53103, and 104 whend50.25 to ob-
serve how viscous diffusion affects perturbed monopole evo-
lution. This section describes and discusses our two main
conclusions. First, perturbed Lamb monopoles do not neces-
sarily return to a state of radial symmetry. For smalld ~0.02
and 0.1!, the positive and negative aspects of the disturbance
mix together and negate one another, leaving the original
Lamb monopole essentially intact. However, for large
enoughd ~0.25!, the initial tripolar structure undergoes a
period of reorganization that leaves the negative inclusions
intact. The second conclusion is that the nonaxisymmetric
tripole resulting from a moderate disturbance is robust and
only slowly decays through viscous diffusion. As we de-
crease the Reynolds number, we decrease the lifetime of the
tripole because viscosity erodes the negative inclusions.

Our greatest frustration is that we do not observe rapid
shear-diffusion mixing in the tripolar attractor. There are two
possible reasons why this is the case. The first is that numeri-
cal errors within our nonlinear simulation hinder our ability
to measure an effect which is itself quite small. That is, the

finest scales of our simulation may not be quite fine enough
to capture shear diffusion mixing. This is evident in Fig. 5
wherein we compare the nonaxisymmetric enstrophy~dis-
cussed further in the next section! for linear decay with a low
amplitude nonlinear simulation. However, it is clear that the
nonlinear simulations are capturing a monotonic decay in
close agreement to the linear simulation. The second prob-
lem is that we lack an analytic or numerical solution to the
tripole attractor. Indeed, as we shall see later, the tripole is
not even steadily rotating, and there are some small radial
oscillations as well. Thus, measuring the decay relative to a
quasi-steady structure is somewhat problematic although we
do propose a technique that captures some of these effects.

A. Measurements of decaying structures in
corotating frames

When studying decay toward an attractor, it is necessary
to first know the structure of the attractor. In the case of the
linear stability of the Lamb monopole, there is an exact so-
lution to the stable structure. In the case of the quasi-steady
tripole, we lack an exact solution. Even moving into a frame
that is rotating with the tripole, there are slight radial oscil-
lations in the negative inclusions. In fact, we shall see later
that the tripole does not rotate steadily. Rather, the rotation
rate varies slightly with time. Thus measuring the rate of
decay of this quasi-steady object is problematic. In this sec-
tion, we propose a new technique for measuring decay rates
of structures like the tripole.

Although nonaxisymmetric enstrophy is an appropriate
quantity for measuring relaxation to axisymmetric attractors,
it would not be appropriate for general vortical structures
because the attractor might not have axisymmetric stream-
lines. To measure the relaxation in a quasi-steady rotating
object where the streamlines of the attractor are not known,
we move to the frame rotating with the structure. Melander,
McWilliams, and Zabusky used a similar method of analysis
to study their top-hat elliptical vortices.11 If one knows the
angular velocity,V, for the attractor, one can determine the
corotating stream function and its associated velocity field:

2v~x,t !12V5¹2c rot , ~17!

urot5F2]y
]x

Gc rot . ~18!

Convection across corotating streamlines associated with
mixing would then be measured throughurot•¹v, the con-
vective term of the Navier–Stokes equations. Thus a natural
relaxation measurement is theconvective orthogonality,

F5E
0

2pE
0

` ~urot•¹v!2

iurot
2 i

r dr du. ~19!

Normalization of the velocity field is essential because we
only wish to measure vorticity transport across streamlines
andc rot grows quadratically inr . If the vortex structure is
steadily rotating or even ifV changes slowly with time~i.e.,
locally steadily rotating!, one would expectF→0 as t→`
physically. For calculations, there would be some floor value
at which one observes numerical errors.

FIG. 5. A comparison between the nonaxisymmetric enstrophy of linear and
nonlinear monopole relaxation simulations. The linear simulation uses a
linear spectral code capable to resolving shear-diffusion spatial scales.
CCSVM is a fully nonlinear code, but cannot resolve the very fine spatial
scales necessary for shear-diffusion mixing as well as the linear spectral
simulation.
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Since these measurements rely on knowing the base
state’s angular velocityV, we developed a consistent com-
putational technique for determining a local rotation rate for
the vortex structure. Since an exact solution to the tripole
base state is not known, we computed the rotation rate lo-
cally using second moments. The zeroth and first moments
of the tripole structure are conserved both physically and
numerically and so cannot provide any relevant information
about the angular orientation of a structure. However, the
individual second moments evolve with time and, from this
information, we can determine the rotation rate.

Using second moments, we determined the angular ve-
locity of the evolving tripole with centered differences. Sup-
pose we measure the following quantities:

mxx~ t !5E E x2v~r ,u,t !r dr du,

mxy~ t !5E E xyv~r ,u,t !r dr du, ~20!

myy~ t !5E E y2v~r ,u,t !r dr du.

There are three unique second moments corresponding to the
three coefficients of a two-dimensional quadratic form. If the
structure is rotating steadily with angular velocityV, then

Fmxx~ t ! 2mxy~ t ! myy~ t !

mxy~ t ! myy~ t !2mxx~ t ! 2mxy~ t !

myy~ t ! 22mxy~ t ! mxx~ t !
G

3F cos2~VDt !
sin~VDt !cos~VDt !

sin2~VDt !
G5Fmxx~ t1Dt !

mxy~ t1Dt !
myy~ t1Dt !

G . ~21!

Thus to uniquely determine the three quantities~cos2, sin2,
and cos sin! of interest based on the three moments, it is
necessary to solve this three by three system. This linear
system is easily inverted yielding a local value ofV. As a
diagnostic, we calculated sin2(VDt)1cos2(VDt) as the per-
turbed monopole evolved and found that this residual devi-
ated from unity by less than 0.1% during the simulation. One
subtlety in solving this problem is that it is best to compute

V5tan21Fsin~VDt !cos~VDt !

cos2~VDt ! G Y ~Dt ! ~22!

rather than

V5tan21F sin2~VDt !

sin~VDt !cos~VDt !G Y ~Dt !

becauseDt is small and the latter will induce large numerical
errors.

B. Quasi-steady tripoles and local negation of shear
diffusion

Our first observation in measuringF is that the rotation
rate of the tripolar attractor is not steady. In Fig. 6, one can
see that even after the tripole relaxes to a quasi-steady struc-
ture, the rotation rate varies with time. Furthermore we ob-
serve subtle radial motion in the structure, as well further

hindering measurements of relaxing toward the tripole attrac-
tor. This oscillation in the aspect of the structure may be
connected to a similar oscillation in the axisymmetrization
experiments Melander, McWilliams, and Zabusky measured
with ‘‘diagnostic ellipses.’’11 However, it is important to
note that these previous experiments study the axisymmetri-
zation of top-hat elliptical profiles which are more akin to
Kirchoff vortices than more generic continuous distributions
of vorticity where shear diffusion will be present. The sec-
ond observation is that, while our simulations can capture the
initial stages of the relaxation where the perturbation be-
comes sheared and stretched to fine scales, either radial re-
distribution in the tripole or numerical noise affects our mea-
surements before shear-diffusion mixing can occur.
Although we cannot isolate an asymptotic decay timescale,
we can identify the strong nonlinear, inviscid mixing mecha-
nism as we vary Re.

Nonlinear interactions manifest themselves in several
different ways as the perturbation relaxes. The nonlinear in-
teractions radially redistribute the axisymmetric mode so that

FIG. 6. Slow evolution ofV for the tripolar attractor. Although only com-
prising a portion of the total angular velocity, significant variations inV are
observed ford50.25 and Re5104. The angular velocity,V, is determined
using Eq.~21!.

FIG. 7. The stream function,c rot , ~left! for d50.25 forv in a frame coro-
tating with the tripole and the perturbed vorticity,v8, ~right! at t5500. The
angular velocity of the tripole,V, is observed to be 2p/620. The vorticity
contour interval is 5.031022.
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the symmetric part of the total vorticity field is no longer a
Lamb monopole. This structure, once created, relaxes slowly
on the Re timescale. Next, the negative vorticity inclusions
can create a critical separatrix and closed streamlines, coun-
teracting shear diffusion in certain regions of the flow corre-
sponding to the negative vorticity inclusions~see Fig. 7!.
Thus it is impossible for the shear diffusion to eradicate the
negative inclusions while stripping can occur outside this
separatrix. We suspect that this mechanism is responsible for
coherence of the tripole. In a sense, the fundamental problem
reduces to studying the stability of simpler structures in shear
flows. The stability of elliptical vortex structures in shear
flows has been studied by Kida, and Moore, and
Saffman.20,21 However, the instability of an elliptical form
does not imply a lack of coherence of a more general struc-
ture. Similarly, Mariotti, Legras, and Dritschel have studied
the stripping of vorticity by cooperative and adverse shearing
as a critical mechanism in vortex erosion although they also
found that viscous diffusion greatly enhances erosion.19

While nonlinear interactions would prevent shear-
diffusion mixing between the negative inclusions and the rest

of the tripole, the tripole is still robust, meaning that both
physical and computational disturbances to the structure are
attenuated by some mechanism. One possible explanation is
the shear-diffusion mechanism.

Eventually, viscosity transports vorticity across closed
streamlines. In particular, positive vorticity will mix into the
negative inclusions. In Fig. 8, one can see the effects of
erosion at different Reynolds numbers. Since the structure is
quasi-steady and vorticity is diffusing solely across stream-
lines, we would expect to see the tripole relax on a slow Re
timescale~see Fig. 9!. There is some retardation at the lower
Reynolds numbers because the negative vorticity has dif-
fused more substantially into the monopole. At Re5103, one
can no longer observe negative contours byt5600.

It is clear that the Gaussian monopole is the asymptotic
structure for these experiments ast→` because the negative
inclusions are vanishing relative to the base state. Even if
there were a persistent viscous tripole solution, one would
expect it to be unstable to external disturbances ast→`
because the negative inclusions would drop below any given
value for large time. However, the existence of viscous tri-
pole solutions for all time remains an open question.

V. CONCLUSIONS

In this paper, we describe in some generality how per-
turbed monopoles will evolve toward one of two distinct
attractors. The monopole attractor is already well under-
stood, but the tripole attractor remains elusive. While these
tripoles are robust to moderate perturbations, it is not clear
what the asymptotic structure is. While we speculate that the
asymptotic structure would correspond to an alignment be-
tween vorticity contours and streamlines, there is no defini-
tive evidence that this is the case. Finally, we propose a
technique for measuring the decay of perturbations to the
speculative asymptotic state.

The observation of this tripole attractor contradicts the
natural assumption that concentrated regions of vorticity
where the field is dominated by positive~or negative! vortic-
ity will rapidly relax to an axisymmetric state. For instance,
some investigators have assumed that vortex sheets will roll
up and aggregate into an axisymmetric core region.13 While

FIG. 9. Reynolds number timescale decay of the ratio between the maxi-
mum vorticity and minimum vorticity. While there is some initial reorgani-
zation, the asymptotic tripoles at various Reynolds numbers decay in a simi-
lar manner.

FIG. 8. Gradual erosion of tripole structure as the Reynolds number decreases: As one can see from these snapshots of moderately perturbed~d50.25!
monopole disturbances, for a fixed time the structure gradually erodes as one increases the Reynolds number. From left to right, Re5103, 53103 and
104. The vorticity contours are the same~1.2531023 per division! throughout the sequence.
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this may be true in many situations, these tripole experiments
indicate that there are exceptions where these assumptions
are not valid. Similarly, in vortex method computations,
overlapping vortices are merged in special circumstances to
decrease the computational complexity.12,14 These experi-
ments indicate that this assumption is not correct in all cir-
cumstances.
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