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MEAN FIELD EFFECTS FOR COUNTERPROPAGATING TRAVELING
WAVE SOLUTIONS OF REACTION-DIFFUSION SYSTEMS*

A. J. BERNOFF**, R. KUSKE*, B. J. MATKOWSKY*, AND V. VOLPERT*11

This paper is dedicated to Joseph Keller on the occasion ofhis 70th birthday.

Abstract. In many problems, e.g., in combustion or solidification, one observes traveling waves that
propagate with constant velocity and shape in the x direction, say, are independent of y and z and describe
transitions between two equilibrium states, e.g., the burned and the unburned reactants. As parameters of
the system are varied, these traveling waves can become unstable and give rise to waves having additional
structure, such as traveling waves in the y and z directions, which can themselves be subject to instabilities
as parameters are further varied. To investigate this scenario we consider a system of reaction-diffusion
equations with a traveling wave solution as a basic state. We determine solutions bifurcating from the basic
state that describe counterpropagating traveling waves in directions orthogonal to the direction of
propagation of the basic state and determine their stability. Specifically, we derive long wave modulation
equations for the amplitudes of the counterpropagating traveling waves that are coupled to an equation for
a mean field, generated by the translation of the basic state in the direction of its propagation. The
modulation equations are then employed to determine stability boundaries to long wave perturbations for
both unidirectional and counterpropagating traveling waves. The stability analysis is delicate because the
results depend on the order in which transverse and longitudinal perturbation wavenumbers are taken to
zero. For the unidirectional wave we demonstrate that it is sufficient to consider the cases of (i) purely
transverse perturbations, (ii) purely longitudinal perturbations, and (iii) longitudinal perturbations with a
small transverse component. These yield Eckhaus type, zigzag type, and skew type instabilities, respectively.
The latter arise as a specific result of interaction with the mean field. We also consider the degenerate case
of very small group velocity, as well as other degenerate cases, which yield several additional instability
boundaries. The stability analysis is then extended to the case of counterpropagating traveling waves.

Key words, reaction-diffusion equations, traveling waves, mean field effects, interface problems
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1. Introduction. Mean field effects play an important role in the dynamics and
pattern formation of physical systems. For example, in Rayleigh-Benard convection,
mean flow modes (corresponding to a zero eigenvalue)with nonzero vertical vorticity
may interact with convection roll solutions that are spatially periodic in one horizontal
direction. This interaction leads to a significant reduction of the interval of wave-
numbers for which the rolls are stable [1]-[3]. The resulting instability, referred to as
the skew varicose instability, leads to transitions to two dimensionally modulated rolls,
due to perturbations whose wavenumbers are oblique to that of the rolls. Similar
effects have been studied for longitudinal seismic waves in a viscoelastic medium [4],
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in which a zero mode interacts with a single traveling wave mode. The range of stable
wave numbers of the traveling wave is again dramatically reduced due to the
interaction between the zero mode and the traveling wave.

In this paper we consider mean field effects in a system of general reaction-dif-
fusion equations in three spatial dimensions in which the basic state is a traveling
wave propagating along a given axis. Our study is motivated by the fact that in many
problems, e.g., in combustion or solidification, one observes such waves propagating
with constant velocity and shape in the x direction, say, independent of y and z,
which describe transitions between two equilibrium states, e.g., the burned and the
unburned reactants. As parameters of the system are varied, these waves can become
unstable and give rise to waves having additional structure, such as traveling waves in
the y and z directions, which can themselves be subject to instabilities as parameters
are further varied. This system, in two spatial dimensions, with only weak mean field
effects considered, was analyzed in [5]. Solutions bifurcating from the basic state
include counterpropagating traveling waves in directions orthogonal to the direction
of propagation of the basic state, and an underlying zero mode (mean field),
corresponding to translation of the basic state along its axis of propagation. In [5]
traveling waves with an G(1) group velocity were considered. Since the waves
propagate on a fast time scale, a wave propagating in one direction "sees" on a slower
time scale the average of the wave propagating in the opposite direction. Employing
these averages, coupled nonlocal complex Ginzburg-Landau amplitude equations
were derived that decouple from the equation for the zero mode. Similar analyses for
problems with G(1) group velocities in gaseous combustion, in gasless solid fuel
combustion, and in water waves were carried out in [6]-[8], respectively. Quantitative
changes in stability results, due to the nonlocal nature of the equations, were derived
in [9] for standing waves, and for quasiperiodic waves, which include standing waves as
a special case, in [5]-[7].

We consider both ’(1) and small group velocities. We derive evolution equations
for the modulated amplitudes of two bifurcating counterpropagating traveling waves,
which are coupled to an evolution equation for the zero mode corresponding to
translation of the basic state along its axis of propagation. The modulation equations
are then employed to determine how translation of the basic state affects the
dynamics and pattern formation in the system.

In studying mean field effects on the stability of plane wave solutions, we
consider perturbations along the wave vector k of the plane waves (longitudinal),
orthogonal to k (transverse) and combinations thereof (oblique). We derive equations
to describe modulations of the plane waves and then employ the equations to derive
stability boundaries for both traveling wave and quasiperiodic plane wave solutions.
Specifically, we consider stability in the limit of long wave perturbations. The stability
analysis is delicate because the results depend on the order in which transverse and
longitudinal perturbation wavenumbers are taken to zero. For the unidirectional wave
we demonstrate that it is sufficient to consider the cases of (i) purely transverse
perturbations, (ii) purely longitudinal perturbations, and (iii) longitudinal perturba-
tions with a small transverse component. These yield Eckhaus type, zigzag type, and
skew type instabilities, respectively. The latter arise as a specific result of interaction
with the mean field. We also consider the degenerate case of very small group
velocity, as well as other degenerate cases, which yield several additional instability
boundaries. The stability analysis is then extended to the case of counterpropagating
traveling waves.

In 2 we present the mathematical formulation of the problem, describe a
traveling wave solution (which serves as a basic state), and describe conditions for its
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linear instability. In 3 we consider a nonlinear analysis of the problem in a
neighborhood of the minimum of the neutral stability curve. We derive a set of three
coupled equations for the evolution of long wave modulations of the amplitudes of
counterpropagating traveling waves in directions orthogonal to the direction of
propagation of the basic state and a mean field generated by translation of the basic
state along its direction of propagation. Solutions of these equations and their
stability are discussed in 4. Specifically, we determine Eckhaus type instabilities by
considering longitudinal perturbations, zigzag type instabilities by considering trans-
verse perturbations, and skew type instabilities by considering oblique perturbations.
The latter arise as a specific result of the interaction with the mean field and are not
present without this interaction. Finally, 5 contains a discussion of results obtained.

2. Formulation. We consider the general reaction-diffusion system

=D -++ +f((t’h) t>O, -<x y z<(2.1_) Ot Ox2 Oy 2 Oz 2

fi bounded as x, y, z - _+ w.

where and x, y, z are the temporal and spatial variables, respectively, and
fi(x, y, t; ) and f(fi; ) are vector functions

(2.2) fi (fil,/2,..., tim), f(fi; h) (fl,fz,’’’,fm)"

The matrix D is diagonal with nonnegative elements on the diagonal. The parameter
h is real.

We assume that there is a traveling wave solution w( sc) where x + ct, which
propagates along the x-axis with constant velocity c. We note that in general c

depends on both w and . We refer to the traveling wave solution w(:) as the basic
solution, which satisfies

(2.3) Dw" cw’ +f(w; ) 0,

where indicates differentiation with respect to the moving coordinate .
We assume that at a critical value )t 0 the basic solution loses stability. To

determine conditions for the instability of the basic solution and the types of solutions
that appear as a result of the instability, we introduce the perturbation

(2.4) u =fi-w

and linearize (2.1), written in terms of the moving coordinate system attached to the
traveling wave, about u--0, to obtain

3U ( 32U 32U 32U) OU
-D ++ -c +aau(2.5)

Ot - Oy2 Oz 2 --where %(w) is defined as the Jacobi matrix

Ofi(w; h) ] (i, j 1,..., m).(2.6) aa(w) =-
Ow

We substitute

(2.7) u lt+ikyy+ikzu( ), (ky)2 + (kz)2 =- k 2
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into (2.5) to obtain

(2.8) Dv" cv’ k2Dv + v tzv.

Here k and /z + co are the wave number and growth rate, respectively, of the
perturbation u. Below we consider modulations of solutions that are spatially periodic
in the y direction only; that is, we consider the specific case ky k, k 0. That is, we
will consider modulations of traveling waves in the y direction.

The parameter/x is an eigenvalue of the operator in (2.8). We assume that there
exists a critical value of the parameter ,, say )to 0, such that the following conditions
hold.

(1) For , < 0 and all k 4 0, all eigenvalues /x have negative real parts.
(2) For )t 0, k k0 4: 0, there exist a pair of purely imaginary eigenvalues

/x ___= + ico0 4: 0, and all other eigenvalues /x have negative real parts.
(3) For each A > 0 there is a range of wave numbers k_ < k < k/ such that for

each k in this range there exist eigenvalues /x (k, ,) + co with > 0, and < 0
for all other k. In addition, the real parts of all other eigenvalues are negative for
k4=0.

(4) For k 0 and all values of A, there exists an eigenvalue /z 0, which
corresponds to the eigenfunction w, while all other eigenvalues have negative real
parts.

These assumptions indicate that the basic solution, which is stable for , < 0,
loses its stability when , passes through the critical value ’0 0 via a Hopf
bifurcation. There exists a continuous band of wave numbers of perturbations for the
instability region , > 0. The curves k+ form the neutral stability curve that has a
minimum at k k0. For 0 the system (2.5) has the solutions

(2.9) ei(t+kY)Uo() =- elY0( : ), ei(t-kY)Uo( ) e2u0(), w( ),

as well as ely0( ) and ezU0( ), where indicates complex conjugate, v 0 is a solution
of (2.8) for k k0,

, 0, /z co0, and w is a solution of (2.8) for k =/x 0,
which corresponds to translation.

3. Nonlinear analysis. We perform a local analysis about the point (, 0,
k k0), which corresponds to the minimum of the neutral stability curve, and seek
modulated solutions that bifurcate from the basic solution. We define the small
parameter e as

(3.1) E2U,

where v-- 1(- 1) when ) > (<) 0, employ the scaled slow variables

(3.2) T= Et, =- _2t,

and expand as

(3.3)
u eU(t,T,-,,y, rl, ) + EeU2(t,T,,,y, rl, ) + 3U3(t,T,,,y, rl,) + ....
We expand the nonlinear function f(fi; ,) about the basic solution w as

(3.4)
f(a; a) f(w + u; a) f(w; ) + xu + #(u,u) + /(u,u,u) + a(u,u,u,u) + ...,
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where a, is defined in (2.6) and

(3.6)

(3.7)

where repeated subscripts indicate summation. Since a,, /3,, y,, and 6,, as well as c,
are in general functions of ,, we expand as

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

O/a a0 -}- h 0/1 -}- ...,
& ~/o + a/ +"-,

y, To + a,,, + ..-,

6, 6o + h6 + ...,
c, Co A- hc1+ ...,

where ao %la=o, /30 =/3,1,=o, 3’0 y,l,=o, 6o 8,1,=o, Co c,l,=o, and

(3.13)

Substituting fi w + u and the above expansions into (2.1), written in the moving
coordinate system (c, y, t), we equate like powers of e to obtain (2.3) at leading
order, and the sequence of equations

(3.14)
3g (02g’o32Uj") o3gcU =- D + +Co ceo Uj. r
Ot O 2 Oy iz 0,5

Uj. bounded as sc, y --* _+ , j 1,2,...,

where r 0, and the nonzero inhomogeneous terms 5 (J- 2, 3, 4) are given in
Appendix A.

We first consider the problem corresponding to j 1, that is ZeU1 0. The
general long time solution is given by

(3.15) U (Rle + Sle2)u0( ) + c.c. + xI)’lW{)( ),

where c.c. denotes complex conjugate. At this order the complex coefficients
RI(T, r, "0, ) and St(T, r, rl, ) are undetermined, as is the real coefficient

I(T, r, r/, ’). Since a nontrivial solution exists for the homogeneous problem (3.14)
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with j 1, certain solvability conditions must be satisfied for solutions of the inhomo-
geneous problems (j > 2) to exist. We introduce the inner product

(3.16) (g,h) 4zr- Jo "o ._gh
where g and h are bounded functions of : on (-% o) whose product gh - 0 as
sc + in such a way that the above integral exists. As noted above, we wish to study
modulations of solutions that are periodic in and y, so that we confine consideration
in (3.16) to functions g and h that are periodic in and y, as is the case for (3.15).

To state the solvability condition, we first determine the long time solutions to
the problem adjoint to (3.14)with j 1

3U* ( 32U* o32U ) 3U*
-D + -Co aU* =0(3.17) Ot c) 2 Oy 2 c)

U*O as : +o,

which have the same periodicity in the original temporal and spatial variables and y
as the long time solutions (3.15) to ’= 0. Here a is the matrix adjoint to a0.

Thus the solutions of (3.17) are given by

(3.18) 0 0( )’ (I)l 1( : )el, (I32 qbl( )e2,
and their complex conjugates. The functions 40 and 41 are solutions of

(3.19) Db + Co4; + a6o 0,

(3.20) Dd’’ + Dkg (1 CO d/) Og d/) -Jr- wo d O

The solvability conditions are then given by

(3.21) (rj,k)=0 fork=0,1,2 and j>_2.

In applying these conditions for j > 2 we assume that 4k (k 0, 1) have been
normalized so that

(3.22)

For j 2 we obtain

OR
(3.23) "IR =

OT

c9S
(3.24) 2S OT

cg alt
(3.25)

OT

<Vo, bl> <w), bo> 1.

OR O2R1
’ rl

< Dvo d,b )
O( 2

O,

o3S o32S1
+ < D o, 61>0 .2 0,

32xtt
=’o(le l + Is l +

where

(3.26) b ( Dw’o, bo>;
and the (real) group velocity o is

(3.27) w; -= -- =g0

Ho (/3o(Vo,oo), bo>,

2iko ( Dvo, qbl ).
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Below we will consider the group velocity o) to be (1) as well as small and will
derive stability results for each case. When (3.23)-(3.25) are satisfied, the solution to
the problem for j 2 is given by

U2 2(1Rll 2 + 18112)pl
+ + + + l  X1 e p4

(3.28)

where RzelVo, SzezU0 and 2w are solutions to the homogeneous equation (3.14),
and the equations for &.( sc) are given in Appendix A. Proceeding as in the case j 2,
we find solvability conditions for j 3, which are

OR
<lR2 + aaR + azRIIRI] 2 + a3RalS] 2

02R1 Oalr Oqq OR
(3.29) + a5

02 a.I)’ 03R1 04R1
+a9+ a7R1 0 2 -- ikoa8 0 20"0 0 4

(3.30)

0S 02S1 0 a.I/’
,2S2 --]-- alS -q- azSIISll 2 q- a3SIIRll 2 -k-as ikoa4S

(3.31)

0at’ 0S 02 aI’ 03S1 04S1
t- a7S ikoa8 +a9

0I)’2 02 aI)’2

aT H(R2I + $2 + c.c.) b
0C

+a6-

3(R2, $2, q/’2 )

and for j 4, which are

0aI/’ 0 2 a.I*l
+b

0"/" 0’0 2.-

[b3 (1 02R1
0 2

+ ikob2
OR-----!- S + c.c.

S1 0" 2 -’k C.C. "+" b
0"

0 4 ’tI)’ [ORIORaOSaOS-7]+ b4 0" 4 -t- b6 0sr 0"
t-

0" 0sr

OT -+-air2 -1--a2(g122-+- 2R21Rll 2) q--a3(g21Sl12-+ RI(S2 -+- S12)

+ ikoa4 R1+ ika4R2
0"0 0"0
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(3.32)

,2S3

(3.33)

0xI* cgR
2 0xP’2 0R 02xI’2+ a6 3 3 a6 3 c9

+ aTR1 3 2 + ikoa8

04R2 2 OR1 12+ikod2]S+ a90 4 + ikodlRl
0R O 2 ’tI/’

+ d3R
0 02

o3R1 OR o aIr
+ ikod4 + d

Oq &q Orl
S1 OS1

R+- ikod6SRa + ikod7 aS

+ ikodsR
OR---

+ ikodgR
04R1 oSR1

dl O’. 20r/2 + ikdll O 40q

03R2

OR
ikodl2

02R 2R
+da 0"------ _d4lR ]2O"2

0 2-1 OR10 2 XI/’
dsR21 Oi 2 +ikd*6 Oq -O---36R 021+ d18 off 6 -+- dl9R1S1 O 2

O2S1 O2R1
+ dzR1S1 0" 2 + d21 IS112o,,2

OR O2xP’ oa,I/’ O2R1 OxI* 02R1
+ ikdz2 c?( c)Or t-ikd23 O- O(3r

{-ikd24-- -d25
OR OR
o o R

OR )2 OR oS
+d26 1+d27 - Osr S-71+d28

OR S1
S -[-d29

0Xlrl )2 o3,ti/, OR33XP’l
R1 +d31 R +d32+ ikd3 3 2o--- o o

02air 32R1 Oxlt 03R1
+d33 0’2 8sr2

t-d34 " 8sr3

oS2

OS OS
R1

alS2 + a2(S122 + 2S2[S1[ 2) + a3(S21Rl12+ SI(R2I + gl2)

ikodllSll2 3S1 3S o 2 XI/’
ikod2lg112 + d3S1 2

o33S1 3S 03XI/’ 3R
ikod4 + d ikod6R--71S3"rl 3’q 3’q 3’q

dl0
34S1

+ag
34S2

OR

ikod7- RIS1

ikod11
35Sl

-t- ikod12
OS

ikd8S
OS--

ikod9S

o2S1 o2S1
+da O---T da41S 12O-2 ikod16

OS10 2 ’tI/’

OT O. 2
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,3(R3, $3, q’3 )

09R 09R
81

(3.34)

091 "I1’2 09R1 09R--22+ 2b 09-- 09- + b6 09. 09"

09S2 093
4- C.C.

4-kf2 09T
[Ig112 IS112]

14 4 2 2 2 2+f4[IR1 +1Sll +il,l ISll +f6[IR,I +l&l

-]+f7
09S1 09S1 09R1 09R1

09 2 ’I/’1 12 2--f9 09-2 [Igl +1Sll

+b4
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S + c.c.ikfl c 20’0 O 20’0

( [ 04R 2S1] )fll O 4 + S1 0 4 + c.c.

041 021 061
+f12

+ fas Off 2 + f6 O 2 O 2

+ f17 gl + + C.C.

+ ikof8 + c.c.

o2S1 o211 q- C.C.

q- f19 o3 o 5 o -t-c.c. q-f20 Off Off
where a, b, d, and . are given in AppendN A. We note that the solvabili
conditions for j 4 depend on U3 (see Appendix A), which exists only if the solvabili
conditions for j 3 are satisfied.

We now define R Ra + eg
2 + e2R 3, S S + eS2 + e2S3, and 1 + ff2 +

e23, and combine the solvabili conditions for j= 2, 3, 4 to obtain evolution
equations for R, S, and :

OR O2R
0 + aiR + a2RIR[ 2 + a3RIS[ 2 +as + ikoa4R

O OR 02 03R O4R 1
+a9 R+ a6 Of O

b aTR O 2 + ikoa8 Off 20 O 4

+ e [ ikod [R[ 2
OR

[2
OR

+ ikod2[S + d3R

OR OR O oS
+ikod4 + d ikod6SR + ikod7RS03 o o o

O 03 04R

+ikd8R2o + ikd9Roff 2O dl 0( 20
OSR OR

ikod2+ ikda Off 40(3.35)
02R 02R 02 OR 02

+dl O( d141RI 2 dlsR2

O(
+ ikd16 O 02

04 O6R 02 02S 02R
+dTR + d18 + dl9eS + d20e + d2alSI202
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(3.36)

+ ikod22 - ikod23 + ikod24

OR0 (cgR)
2

-+-d25 o--- 697R -1-d26 -- R q--d27--

oS ors o3q
+ d29 0--- 0--R + ikd3 OC 20"0

(0)
2

+ d3 -- R + d32 0" 30-OS

R

OR OS_ OR OS
S +d28

OT

[d33 o.2 o,,2 I-d34 o o"3

O2S_- alS + azSIS[ 2 q- a3SIR[ 2 q- as ikoaaSOq2

O ’tI/’ oS o2’tI1’ o3S o4S
+a9+a6 f- aTS ikoa8 20r 4

+ e ( ikoda1512
OS

12
oS 092’ti)’

_ikod2lR +d3S

OxI*

1
2S

RS

oS 02S 02S 02
+ikd12- + d13 O 2 d41S12 2a- arss a 2

OS 0 2 aI o 4 aI* o 6S
-ikod16 dlvS + d18OT O 2 O 4 O 6

02 _oZR 02S
+ dlgRS

O 2
q- dzoSR b"2 + d21 ]RI2 O---T

oS o2at. 0I, 02S
-ikod22 ikod23
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(3.37)

O it c? 2 I
+ bl + ikob2OT O2

_OR _OS
R-S

c)r/ Or

b RO( 2 +S- +c.c.

+ c.c.]

--f9 []R]2+IS ]- ikoflo R -k- C.C.

-k- C.C.
O 4 at), O2’tI1’ O6’tI1’

+ f12 O" 20qr/2 + f13 O.----T --f14 0" 6

-+-f15 O" 2 -1- f16 Off 2 aS?. 2 " 2 " 2 -l-- C.C.

o-7 + o-T s +c.c.

( O2R O o2S c
+ c.c.]

Equations (3.35)-(3.37) are the modulation equations that we will employ to investi-
gate the stability of plane wave solutions bifurcating from the basic state. We observe
that had we scaled ’= ez, rather than ’= e.1/2z as in (3.2), many terms in the
evolution equations (3.35)-(3.37) would drop out since they correspond to higher-order
terms. The stability of the plane wave solutions would be unaffected by the rescaling;
however, the nonlinear dynamics of (3.35)-(3.37) may well differ from their rescaled
version.
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A useful observation about (3.35)-(3.37) is that the reflection symmetries in y
and z yield symmetries for the system. Specifically, reflection in z implies invariance
under
(3.38) ’ -’,
whereas reflection in y implies invariance under

(3.39) RS, SR, r/-r/.

4. Plane wave solutions and their stability. Plane wave solutions to (3.35)-(3.37)
can be found by considering solutions of the form of a temporal modulation of a
traveling wave. By specifying the spatial periodicity, we can reduce the system from a
set of partial differential equations to a set of autonomous ordinary differential
equations. Moreover, the amplitudes decouple from the phase and mean field yielding
a two component system that is easily analyzed for the existence and stability of
steady states.

In the calculation below we assume without loss of generality that o9, k0 > 0. In
addition we restrict ourselves to the physically relevant case that the initial bifurcation
to a traveling wave is supercritical (a necessary condition for stability), which implies
that a > 0 and1, a5 a2 < 0.

Consider a solution of the form

(4.1)
R =- r(-)ei()+i(n+’Sr), S =- s(r)ei4’()+iE-’r), qew =- 9o(T) + 1(’),

where r, s are real amplitudes, bR, bs are real phases, and 40, 0 are spatially
uniform displacements of the basic state.

We introduce the notation

(4.2) aj Re aj + Im aj =- a + ia},
and use similar notation for the coefficients bj, f., and d.. Substituting (4.1) into
(3.35)-(3.37) we find that the amplitudes are governed by

2 + as2 k2ar= r a + a2r

(4.3) + e(-kokldr2 + kokdr4 + kokldr8 r2 + kokld2
-kodr6k2 $2 -+- kokzds2 kokldS2)],

S2 r 2 k22arsr s a -I- a 2 -t- a

(4.4) + e(kok2ds2 kok3 s 22d4 kok2d8 kok2d12
+ kodr61cr2 kokldrTr2 + kok2d;r2)]

which we note have decoupled from the equations for the phases and the mean field,

ir2 2 2(bR)= [al + a2 + a3s kla
(4.5) + e( kokldr2 + ko r2kid4 +kokld8 +kokad12

2 S
2 iS2)]-kod6kzs + kokzd7 kokld2

s 2 ?.2 2( 4)s) s[ a + a2 + a kza
(4.6) + e(kokzds2 k S

2okzd4 kokzd8 kokzd12
+kodak1r2 kokldr + kok2dr2)],
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(4.7) (qo)r ( sz + r2)Ho,
( )t-- 2b(ko(kl r2 k2 $2))

(4.8) + e(-2f(r2k + s2k) -+- f4(r 4 -t- S 4)

+f5r2s 2 +f6(r2 + s2) +fv(k21r2 + k22s2)).
Equations (4.3), (4.4) are two coupled cubic Landau equations whose equilibria

and stability are well understood (cf. [12]). There are three types of equilibria: (i) the
zero solution (R S 0); (ii) unidirectional traveling wave solutions (R 4= 0, S 0 or
R 0, S 4= 0); and (iii) quasiperiodic wave solutions (R 4= 0, S 4= 0) describing counter-
propagating traveling waves. The zero solution is unstable to wavenumbers k and k2

satisfying

(4.9) k2, k22 <
a
a5

as we are considering the situation where there has been a supercritical bifurcation.
We consider a unidirectional traveling wave of the form R :/: 0, S 0 and note

that the stability of the state R 0, S :/: 0 can be deduced from the symmetry (3.39).
The solution is given by

(4.10) r(t)-p=
2 \ 1/2

klasal
--a2

+ ’(e) s(t) r= 0.

The stability of this state can be computed by linearizing the system (4.3), (4.4) about
the equilibrium and computing the two eigenvalues .

2(4.11) =2a2P 2 a3r__k r__( r_kla5)al as al
a2

The first eigenvalue is always negative as a < 0, whereas the second is maximized for
k2 ---0. For this eigenvalue to be negative, corresponding to stability, it is necessary
that

ala2 a2k,< 1---(4.12) a3 < a2,
asa3 a3

Similarly, a quasiperiodic wave solution can be found

a3(a 2 k2ar) /2
_k2a5 ) _ar2(aa

(4.13) r(t) p 22i?- (a)2 t + (e)’

(4.14) s(t)=cr=
2ar(al kar) arz(al k2as)

r)2(a2)2 (a

1/2

) + (e),

where the radicands in (4.13), (4.14) must be positive for the traveling wave to exist.
Linearizing about this equilibrium yields two eigenvalues

(4.15) 2, a2( p2 + cr2) + V/(a2( p2 + 0-2))2 )2 )2+ 4r2p2((a -(a ),
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which implies that the quasiperiodic solution is stable if and only if

(4.16) lal < lal.
In summary, for the restricted system (4.3)-(4.8), if a < a < 0 the only stable

equilibrium is a band of unidirectional traveling waves specified by (4.12) or their
images under the symmetry (3.39). If la[ < lal the only stable equilibria are a band of
quasiperiodic traveling waves specified by (4.13), (4.14), where the wavenumbers must
be chosen to make the radicands positive. If a > -a > 0 no stable equilibria exist
although unstable unidirectional and quasiperiodic solutions can be found.

Note that solutions to the phase and the mean field equations can be found
corresponding to each of the equilibria above. Substituting

(4.17) bR 917", bs w2r, 0 hoT, lit hr
into (4.5)-(4.8)yields a solution directly in terms of r and p at the equilibrium.

In the next two subsections we consider the stability of unidirectional traveling
waves (R 4= 0, S 0) and of quasiperiodic waves (R 4= 0, S 4= 0) to modulational
perturbations.

4.1. Stability of traveling waves. We first study the modulational stability of the
single mode traveling wave solution (4.10). Note that we can take the amplitude of
S =-0 in this case as the stability to perturbations in S decouples and yields the
criteria (4.12).

We write the amplitude R as

(4.18) R r(rl, r, )eik’T+iwlr+if(rt’r’)

and substitute into (3.35) and (3.37) above, denoting differentiation by subscripts, to
obtain

(4.19)

ir,ktrlq_ r(__(’r/)2r_.}_ )_ai(2rn_t_,rr air + a2 r3 koa4 as rnn
o)o o)oik0 + r+rn + avr- koasrcc + as rl)
e 2koe

+ e(- kodrer frakod +dr+ drsr* dfr
-kodi4(%- 3e%- 3fr)
-kodr4(a,r, + 3fr + 2,r- 3r)
+koder + kodeOr- kodrer + kodr3O

klWo

rn+ e kodlrr, Onr2kod + d3,, + d
r xlr +
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(4.20) rnn 3a2
n
% )+kd4 r r

-kod 3a r r

kod _r + kd12n + kdsn + kdr2
r + +r: + ++ dn r
d:; r d3( (d4 ds)r::r

-(d s)a: r dg0a%),
1-r + blnn 2ko bi 2

2%r- 2kob2nr
Ho F2 2 bl

+ + 2br;r- 2bar +

F2 F 2+ + ) 2  (2a r r + a.. )
2 + 2F2 2+f4 r4 +f6 r2 +f7(% ) 2kofs;nr

-20?;rar-r%+ 20Gar::r
2k

We note that in the equations above we have retained only those terms that
enter the stabili analysis. For example, terms such as

O 02R

O O( 2

involve only products of perturbations to the plane wave solution, which are dropped
in the linearization. We study the stabili of the plane wave solution by writing

(4.22) r p + ?e+irn+ir2,

(4.23) kl + ez,+irn+ir2;,

(4.24) hoT + h7 + @e,+irn+ira;
and linearizing (4.19)-(4.21) about + ?= 0. We find that the stabili of the
single mode, plane wave solution is determined by the eigenvalues Z of the matrN
given by

(4.25)

where

A B C].d/-= F G H
J K L

A =- a + 3are 0 2 2 2k k3kod4 d12--kaa + e(-3k p odl -t" + ko k + 3kid8 p2kO)

/ +G )+ iF -2a + e(-kod 0
2 + 3kokdi4 + kod2 + kodi8 02)

(4.26) e

+ F2(-a + e(3kodrak))
+ r(koak, + e(- 2dok d3 + (d14 q- d15)p2)),
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(4.27)

(4.28)

(4.29)

(4.30)

B iF( 2a;k p + e(- pkod’ + 3k pkod4 + kod’2 p + kod p))
+ F2(a,.O + e(-3kod4k p))

k p F e(dlokl2 p + d13 p (d14 dis) )+F22 -ka8 2koe
p + e(_dkl p)) + F2(ed p)C iF(-koa4

+ F(-a + edkok
F 2a2 p + e(-2k pkod + 2kid pko)

2ask 3k
+ iF + e kod O- kod O

+F ma5 +e
P

+F22 k0as

G iFl{-2ak +

3kdi4kl))p
oo’o - ( -dok d3

2kop p P

’e + e(-PZkd + 3kkd + kd2 + kdis p2))
+ (d4+d5)p)),

+ F(-a + e(3kodr4kl))
+ F(koarskl + e( ’-dok -d’3 + (d4- ds)p2)),

H iFl(koar4 + e(drkl)) + F2(- ed)
+ F(-a + ed kok1)7 6

2Hop
J 4kobk p -4 - e(-4klf p + 4f4 p3 + 2f6 p + 2f7k p)

(4.32) + iF1( 2kob p + (-4fk p)) + Fe(- 2f p)

+ F22(-2b p+ e(-2kof p+ 2kof[kl p-2kof(ok p)),
K iFl(_2kob p2 + e(-4fk p2 + 2f7k p2)) + Fa2e(2f p)

(4.33) + F22(2b3i p2 + ( _2kof[ p2 + 2kofokl p2_ 2kof[kl p2)),

(4.34) L irle(kof2 p2) rl2b,+ r22( bl )+ e(f902 --f13)

The eigenvalues are roots of the characteristic equation for the matrix
Stability is considered in the limit of long wave perturbations, F1, 1’2 -+ 0. The
particular distinguished limit taken is very important; by dividing the problem into two
overlapping cases a complete set of long wave stability criteria can be established.
First, transverse and oblique perturbations are considered subject to the restriction
r12/e << r << e. Second, nearly longitudinal perturbations are considered with F <<

II’l << e, which overlaps the general oblique case. Finally, we consider near degener-
ate cases that occur in certain parameter limits such as coo -+ 0.

First note that for F F2 0 the eigenvalues of are given by 2a 02 +
’(e), 0, 0, where the first eigenvalue follows from the analysis in the previous section.
The two zero eigenvalues correspond to translation along and orthogonal to the
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direction of propagation of the basic state. It is the perturbations of these eigenvalues
from zero into the right half plane that may lead to instability. The third eigenvalue is
negative and plays no role in the stability analysis.

The symmetries in the problem place some restrictions on the form of the
characteristic equation for the eigenvalues. First note that the reflection symmetry in
the transverse direction (3.38) implies invariance under the change of variable,

(4.35) F2 F2.
The perturbations (4.22)-(4.24) are complex perturbations to a real system, so the
resulting characteristic equation is invariant under complex conjugation. This, with
(4.35) implies invariance under the change of variables

(4.36) E; ----) , F --) F

We now proceed to study the two long wave limits described above.
4.1.1. Transverse and skew stability. In this case we consider both pure trans-

verse (F =0, F2 4: 0) and oblique perturbations (F1 4=0, F2 4:0) subject to the
restriction that we are not near the purely longitudinal case (F 4= 0, F2 0). Specifi-
cally, we require that

(4.37) F2/e << F22 << e.

Expanding the characteristic equation under these conditions yields an equation of
the form

(4.38)

where g" is an error term that is cubic in Z, iF/e, iF/e,

Hokoa4
ea=-o)-, e2= 2Hoa7-ta2 2a

H (’o
) (.o;be4 (2a7 --a4 1,2a;

E2 + e-l(eliG + er)X + ,-(erl + e4iFlr22 +esr4) =,

1 Hoka2 9
2ba e3

9o oa4

k0 a2 ) a2

(00 i_b i)--(Hoa7 a2e
2koar2

and the ei’s have ’(e) corrections.
Note that this equation respects the symmetries (4.35), (4.36). The conditions

(4.37) together with the assumption that certain combinations of the e’is don’t vanish
(discussed in 4.1.3) is sufficient to assure that the error term will only contribute
higher-order corrections to the roots.

One might expect that the full solution to (4.38) needs to be computed. However,
by completing the square, we have shown that necessary and sufficient conditions for
the roots ; to have negative real parts, corresponding to stability, are

(4.39) e2 > 0, e5 > 0,

(4.40) e2 + 4e > 0,

(4.41) e42 > ee2e4 + e3e22.
Note that if any of these conditions vanish to leading order, it may be necessary to
consider higher-order corrections.

A more intuitive interpretation of these conditions can be given by showing that
they correspond to particular types of perturbations. This will prove useful by
providing a framework for considering the quasiperiodic case in the next section
where necessary and sufficient conditions are difficult to obtain analytically.



MEAN FIELD EFFECTS IN REACTION-DIFFUSION 503

The conditions (4.39) correspond to purely transverse perturbations (F
eigenvalues can be expanded as

0). The

(4.42) E 2 + "".

For 2 to have a negative real part, corresponding to stability, requires that the two
conditions (4.39)which can be written, respectively, as

a2 o90(4.43) 2Hoary -t 2blar2 > 0 and
k0

0);
bl-o (Hoa7 a2

be satisfied. Note that these criteria are independent of the wavenumber k1.

The conditions (4.40) and (4.41) correspond to general (skew) type instabilities in
the limit F22 << F << e (subject also to (4.37)). These can be thought of as transverse
perturbations of a purely longitudinal mode. We expand ; in the form

(4.44) ; 21 -}- 22 q-" """
The symmetries (4.35), (4.36) imply that 1 has either two real values or a complex
conjugate pair. In the former case, the next term 22 is real and its sign determines
stability. The latter case always leads to instability.

Substituting (4.44) into (4.38) and collecting terms O((F1/e)2)yields the quadratic
for

(4.45) 2 + e11 e3 O.

This equation will have real roots when the discriminant is positive. This is condition
(4.40), which is satisfied by the discriminant of (4.45). The two roots can be found
explicitly. They are 1r, which is associated with the longitudinal translation of the
traveling wave and , which is associated with the mean flow, where

(4.46) ]" to;, ; Hokoa4

The discriminant (4.40) is the square of the difference of these two roots,

(4.47) el
2 + 4e (ZI_ Z)2,

which will be positive unless the two roots are nearly equal, in which case higher-order
corrections to e and e may become important. This case is discussed in 4.1.3.

Substituting (4.44) into (4.38) and collecting terms O(FF/e2) yields an expres-
sion for

e + e2 )(4.48) 22
el +-A necessary and sufficient condition for stability in this case is that 22 is negative for

both values of 1-Note that these conditions are equivalent to condition (4.41). If we
assume that e2 > 0, which is necessary for transverse stability (cf. (4.43)), and consider
only the case Z]" > Z, which will be shown to be a necessary condition for stability a
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posteriori, then this expression can be simplified. For E1
for stability is that ] > -e4/e2 or

.+. Hokoar4 > 0(4.49) w0a2

For 1 the condition is X < -e4/e2 or

Xr, a necessary condition

(4.50)
Hokoai4 <

co;k0[H0(2a- a]) 2bla
ar2 oo’o ai2 + 2ko ( Ho ar7 biaS2)

To recapitulate, when (4.37) holds, we find two sets of stability criteria. The first
set (4.43) corresponds to stability to purely transverse perturbations. The second set
(4.49), (4.50) corresponds to stability to oblique perturbations of the form of a
transverse perturbation of a longitudinal disturbance.

For completeness it is necessary to consider cases when the error terms in (4.38)
may contribute at leading order. Thus, we consider two such cases. The first is the
case of nearly longitudinal instability ( 4.1.2) when (4.37) is violated, and the error
terms in (4.38) must be considered. The second ( 4.1.3) is the degenerate case when
one or more of the inequalities (4.39), (4.40), (4.41) is sufficiently close to equality that
higher-order terms can affect the stability boundaries.

4.1.2. Nearly longitudinal stability. Here we consider nearly longitudinal pertur-
bations for which

(4.51) F22 << ]Fll << e.

This allows X to be Taylor expanded in the form

ir r r2(4.52) *-.1 + *-,21 + 22 + "".

Note that the region of validity of this expansion overlaps the region where the
expansion (4.44) is valid. Consequently, solving for Ea and 22 at order unity yields
exactly the same values (4.46) and (4.48). However, the value of 21 must be
determined by considering the higher-order terms in (4.38).

If the value of Ea is taken to be the mean flow eigenvalue Eft, 21 is negative,
corresponding to stability, if

(4.53)

This condition can be written explicitly as

Hokoa’4(4.54) 0 < < o9.
a2

Note these stability criteria are independent of the wavenumber ka.
The second eigenvalue Ear corresponds to the translational mode of the traveling

wave. Physically, it represents a perturbation to the wave’s phase being carried along
with the group velocity. The value of 21 enters at ’(e2). For it to be negative,
corresponding to stability, the appropriate condition (assuming that (4.54) is satisfied)
is

(4.55) se’ +kl2 > O,
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where

(4.56)

and

(4.57)

i) q..Hoko ( i))ae’= 2
al ( W’o(a2a + a2a a4a a4aa

og0a2 + Hokoa4aae,_ 4co(a)2
1 +a ogoa2 -Hokoa4

If a is positive, then o’ is negative, and a band of stable wavenumbers exists,

Ikll< v/-a/ If a, ’ < 0 there are no stable traveling waves. If < 0, . > 0
there is a possibility of the existence of an inverted band of stable waves Ikll
> V/-S/ We have also verified that in the limit when .the coupling to the mean
field is suppressed, this stability band reduces to results well known for the Eckhaus
type sideband instability for the Ginzburg-Landau equation [10], [11].

In summary, the unidirectional traveling wave can exhibit longitudinal instability
due to coupling with the mean field (4.54) or due to standard sideband type
instabilities that yields a band of stable wavenumbers (4.55) that reduce to the
Ginzburg-Landau result in the absence of a mean field.

4.1.3. Degenerate eases. Here we consider two special cases, which occur (i) when
the group velocity vanishes or is very small, w{) 0 and (ii) when the two leading-order
longitudinal eigenvalues are nearly equal, 1 = 4. In these cases the transverse,
skew and longitudinal criteria may vanish at leading order so that higher-order
corrections must be considered.

For transverse modulations we need only consider the case o; 0. We note that
the first condition in (4.43) does not vanish in this limit and therefore need not be
considered to higher order. The second condition is degenerate since e5 vanishes as

w- 0. Rewriting the condition es > 0 including the correction to O(e 2) yields the
condition for stability

(4.58)
r)_ b ko)k +eko(Ho(a7a8 + a7a8 a2a8i_ b i)+090

(Hoa la22koa2 a2

where g is given by

(4.59)

-(arTHo ar2bl)(d’3 + (d4 d’5)(a/ar2))

+(a7iHo + ai2 b)(d3 + (d4 -ds)(ari/ar2))
+2b3i(a/ar2)(aazr_aTazr ) +asi(d_d) +O(k).

In the limit o{--+ 0, (4.58) defines a critical value for k =#’(e) at which waves
become unstable to transverse perturbations.

The second degenerate case that we consider occurs when the leading-order
expression for the discriminant of the quadratic (4.45) vanishes at leading order. If
higher-order corrections lead to a negative discriminant, the two values of 1 will be
a complex conjugate pair that will always lead to instability. Expanding the discrimi-
nant to (e)yields the condition for stability

(4.60) e2 +4e ( f)2 2+ klo,@" + e -> O,



506 BERNOFF ET AL.

where

1
2H0d to0 + 4kba4 + 4aza5. =_ f(_4ar2as i)

at2

4ai2a5 4a_+_ 2H 4kgb2a4 + i) + 4Hokoar r]+(4a2as dswo
(4.61) -= 4ar4d2Hok + 4aradHok + 4ar4dHok(a/ar2)

8(a2a4rr nt_ a2anii)b2k(a/arz)+4aiHokZo[d2+(d_dis)(a/ar2)4

+ o);[4a]k0{f6 2f4(a/ar2)} 2fzarzko(a/ar2)] + ce(k),

so that if 5;- Zr ’(V), an instability will occur if

(4.62) -.k

As (5; r) __, 0 this condition yields a stability boundary for kl G(e).
If (4.62) is violated, then Z1 is real. However, the possibility of skew and

longitudinal instabilities still exist for
as

(4.63)

where

(4.64)

(4.65)

(r + )/2 + ,(e )211 ---e

V’el + 2 +

We now consider skew type instabilities and nearly longitudinal instabilities as in the
nondegenerate cases.

To consider skew instabilities we note from (4.48) that

(4.66)
e + e2 e4 + e2ll e2
e + 2Y_, 212 2

For stability it is necessary that e2 > 0, as must be the case for transverse stability
(4.43), and

(4.67) 4 )2122 > -t’- 11

For to; (1) this condition is generally violated as 122 is (e), but the right-hand
side of (4.67) is ’(1) and positive unless parameters are chosen so that it vanishes
identically. However, for to; - 0 and (-r) 0, both values of 22 are negative
if

(IM_ )2 1 [ w’oHoar4
(4.68) -k > + eo-_ [(Et_ E)-e e 2Hoa 2ab
which yields a critical value of k ’(e). Note that this condition is more restrictive
than (4.62). In the limit of small e and fixed (;- ]), the skew stability criteria
(4.49), (4.50) can be recovered from (4.68).
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For longitudinal stability, it is necessary to compute higher-order correction
terms from the characteristic equation,

1 )2(4.69) + 1221 2a p2 ((’00 1 e8,

where e8 is the coefficient of iF/e in the characteristic equation. For all values of

w we find that 2 > 0, so that an instability is always present in the near degenerate
case. Unfortunately, we do not see how to recover the longitudinal criteria (4.54),
(4.55) from (4.69).

To summarize, we have shown that for long wave stability of a traveling wave it is
sufficient to consider transverse, oblique, and longitudinal perturbations of traveling
wave solutions. For the nondegenerate cases, we find that the skew and transverse
instabilities are independent of the wave number k. For purely longitudinal perturba-
tions, there are two criteria: the first is associated with the mean flow coupling and is
independent of k, and the second is associated with the translational mode of the
wave and yields an order unity band of stable wavenumbers bounded by an Eckhaus
type stability boundary. For the degenerate cases, in which the leading-order eigenval-
ues are nearly equal, or if the group velocity co is small, we find skew and transverse
instabilities for k ’(e), while for nearly longitudinal perturbations the traveling
waves apparently are always unstable in this limit.

4.2. Stability of quasiperiodie waves. We now consider the stability of quasiperi-
odic waves (R 4= 0, S 4= 0). We proceed as for the unidirectional traveling waves, but
now take into account perturbations to both waves. As above, stability is determined
by the growth rate of the perturbation to the plane wave solution (4.1). In this case
the characteristic equation for is a fifth-order polynomial equation corresponding
to the five by five matrix given in Appendix B.

When F F2 0, we find that there are three zero eigenvalues, two of which
correspond to longitudinal translation of each of the two superposed traveling waves
and a third corresponding to a translation in the direction of propagation of the basic
state. The remaining two eigenvalues are given by the analysis in the beginning of 4,

(4.70) a(r 0 + o.) + (ai( p + o;)) + 4o- 0(a ar2)
where O and o" are given by (4.13) and (4.14). We limit our study to the case lal < lal
when the traveling waves are stable inside the reduced system (4.3), (4.4), and to the
values of kl, k for which the quasiperiodic state (4.13), (4.14) exists.

A cubic equation can be derived for the near-zero eigenvalues; however, it is
much easier to examine stability by substituting Taylor series expansions of the
eigenvalues in the particular cases examined in the previous sections into the
fifth-order determinant. While this does not guarantee the examination of all cases, it
reduces the calculation to manageable size.

The symmetry (3.39) implies ,that the characteristic equation, and consequently
the stability criteria are invariant under the change of variables

(4.71) p --+ o-, o- --+ p, k --) k2, k2 --+ kl, F --+ F1.

The symmetries (4.35), (4.36) must also be obeyed.
4.2.1. Transverse stability. We seek a Taylor series expansion for the eigenvalues

of the same form as (4.42)

r22(4.72) 2 + "".



508 BERNOFF ET AL.

Substituting this expansion into the determinant in Appendix B yields a cubic
equation for E2

0(4.73) (2(a2 + a3)E22 +JlE2 +J2) 2(a2 a3)2 -io (a a) 0,

where

(4.74)

(4.75)

0)
(a + i) 4H0a7Jl 2bl(a2 + a3) -0 a3 r,

co [2H0a bl(ai + a3>1.
The factorization of the cubic can be explained by noting that it is independent

of k1, k2 and consequently unchanged by the symmetry (4.71). This allows us to
decompose the matrix into a similar matrix with two blocks; one invariant under the
symmetry and one that is mapped into its negative. The quadratic factor is the
determinant of the first block and the linear factor the determinant of the second.

The coefficients Jl and J2 must be negative for stability, whereas for the second
factor a necessary condition for stability is

(4.76) ai a3

Note that all these criteria are independent of the wave numbers kl, k2.

4.2.2. Nearly longitudinal stability. For nearly longitudinal perturbations, we
again use the expansion (4.52) for the eigenvalues

iF1 F21 F22(4.77) 1 --I-721 -}-22 "".

The cubic equation for 1 is such that two values of 1 are (1)

(4.78) 1 w0, w0.

These roots are associated with the translation invariance of the two traveling waves
and are mapped into each other by the symmetry (4.71). The third eigenvalue is zero
to leading order and is associated with the mean flow. It vanishes at leading order due
to the cancellation of the contributions of the counterpropagating waves and is
discussed below.

For E (.O{), the calculation of E21 and 22 is straightforward, with 21 entering
at ’(e) as in the unidirectional case

(4.79) 21 ekl-l + e2ffl, 22--

where

r)2 r)2’(a2 -(a

2as
(4.80) =1 )2 2

(4.81)

dko(Hokoa4- r0a2

) + Hka4 +a
o;(a)2 (a2

i(ai3 i)] (Mo/ko)(ar2a i)-d’= Hot aa.a3 a2. +a4 a2 a3a3
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Since the expression for 21 in (4.79) yields an instability with ka =(6), we
write ’ only for k (e).

(ai2 r_ r)]--8p20-2og2[((a)2 (a)2)a + a a2 a3a3(4.82)
+0,0’0),[ + ’)(ar= ,0’0 a i4 I-I00)

+ + )]ai2 ,00’ + a4r/-/00)
i(ar2 r)p20.2 i( i)p20-2(4 83) 8H0k w0 a4a5 a3

The corresponding values for 1 -o, that is 21 k22 + e’2 can be found by
using the symmetry (4.71).

Consequently, the conditions for stability are

(4.84) kl’l < eft1, k2=’’2 < e2, > 0.

The remaining eivenvalue must be examined more closely. The third eigenvalue
is given by

11(4.85)
)2o((=

where

i)_ r(a

_
r))’11 -2Hoasko(kl k2)(ai4(a3 a2 a4 a3

3 3+2w2 -Ho(k kz)(2d(a2 a3)+a4ik(- d1+ d8r))

+ )oI-Ior4 + p:I-Io7
(4.86) +4kobe(k k2 r))a(a3+az

ko(dr7 d6 + d2)(kl k2 ) + k)a4 d2 _k2__ + kl---2Hoa4

+ k2-7 ka (d; d-5)

from this it follows that 22 and 21 are given by

2Ho[( ai3 a2i )ai4 +( a4r 2ar)(ar7 a2r)]
22 -b +

(a)2_ (a)2

(4.87)
a]( 0-2 p2co0k0a4 + )

21 t5

2p20-2((ar)2-(ar3)2)
For stability, it is necessary that 21 and 22 are negative; the second of these
conditions reduces to aaa4 < 0.

In summary, we have examined the stability of quasiperiodic waves to perturba-
tions of the same form as was appropriate for the unidirectional case. Stability to
transverse perturbations yielded three conditions independent of wave numbers.
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Nearly longitudinal perturbations lead to three possible pure imaginary leading-order
eigenvalues (i1F1). Two of these are associated with translation of the phase of the
two wave components, the third is associated with coupling to the mean flow. For the
translational mode to be stable to a small transverse perturbation we obtain criteria
independent of wave number. Purely longitudinal perturbations of each of the
translational modes yield a stability boundary for the wavenumber (kl or k2) that is,
G(e). For the mean flow mode, nearly longitudinal perturbations yield two criteria
independent of wave number.

5. Discussion. We have studied mean field effects in a general system of
reaction-diffusion equations by deriving coupled evolution equations for the ampli-
tudes of counterpropagating traveling waves in directions orthogonal to the direction
of propagation of the basic state, and a zero mode describing the mean field, which
corresponds to translation of the basic state in its direction of propagation. We
employed these equations to determine the stability of plane wave solutions, including
both traveling waves and quasiperiodic waves. The latter include standing waves as a
special case. The stability results are given in terms of the perturbation wave number
and the parameters of the model.

For unidirectional waves, most of the criteria are independent of wave number
except for an Eckhaus type boundary corresponding to purely longitudinal perturba-
tions. In certain degenerate limits (such as very small group velocity) stability
boundaries with perturbation wave numbers k el(e)were found. For quasiperiodic
waves, both wave number independent and k ’(e)wave number boundaries were
found.

Siggia and Zippelius [1] and Busse and Bolton [2] first studied mean flow effects
in Rayleigh-Benard convection between stress-free upper and lower boundaries.
Their conflicting results for the stability boundaries of stationary convection rolls
were resolved in [3], where the skew varicose instability boundaries of stationary
cellular solutions were given by k > k0 + t520/1 and k < k0 + 1520/2. Here k0 is the
critical wave number at the onset of convection and 0/1 and 0/2 are (1) quantities.
Higher-order terms, corresponding to ’(15 4) terms in this paper, were included in [3],
where it was shown that if higher-order terms are not included, as in [1], the resulting
expressions for 0/1 and 0/2 are not correct.

In [3] the evolution equation for the amplitude of the stationary cellular solutions
is coupled to an evolution equation for the mean flow field. The equation for the
amplitude of the stationary cellular solution is similar in form to the equations for R
and S in this paper. Differences result from the facts that in [3] stationary cellular
solutions are considered, while here traveling waves are analyzed, and that the
nonlinearities are different. In addition, the evolution equation for the mean flow
field in [3] is different from that for the drift q in this model, since in [3] the mean
field effects are governed by the fluid dynamical equations, while here satisfies a
diffusion equation.

In [4] short-wave instabilities in systems with a zero mode were studied in the
context of longitudinal seismic waves in a viscoelastic medium. Evolution equations
were obtained for the amplitudes of both stationary cellular solutions and unidirec-
tional traveling wave solutions that bifurcate from a basic state of no flow. In each
case the amplitude equations couple to an evolution equation for a zero mode
solution. The resulting evolution equations are similar to those given in 3 up to
ce(e3).

The nonlocal amplitude equations in [5]-[9], couple to the mean field equation
only if transverse modulations are considered. In these studies the dependence of the
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mean field on the evolution time scale (- in this paper)was not included, and
higher-order terms were not considered in the stability analyses. Thus they did not
describe all the instabilities described here. As noted in [5]-[9], standing wave
solutions are more stable for the nonlocal (averaged) equations than for the same
equations with the averages removed. Similarly they are more stable in the context of
the nonlocal equations than in the context of the evolution equations derived in this
paper. That is, the considerations in this paper lead to descriptions of instabilities not
described in [5]-[9].

To obtain the evolution equations in this paper, we combined the solvability
conditions for cY(eJ)(j 2, 3, 4). One might have expected that only the solvability
conditions up to ’(e 3) need be considered. However, the higher-order terms con-
tribute to many of the k =cY(e) boundaries for both the degenerate case of the
unidirectional waves and the nearly longitudinal cases of the quasiperiodic waves.

In conclusion, we derived the governing modulation equations for counterpropa-
gating traveling waves in directions orthogonal to the direction of propagation of the
basic state, coupled to the mean field induced by local displacement of the basic state.
These equations support both unidirectional and counterpropagating wave solutions.
We determined instabilities of these solutions to long wave perturbations by consider-
ing the delicate balance of longitudinal and transverse perturbations to the waves.
Specifically, we determined Eckhaus type instabilities by considering longitudinal
perturbations, zigzag type instabilities by considering transverse perturbations, and
skew type instabilities by considering oblique perturbations. The latter arise as a
specific result of the interaction with the mean field and are not present without this
interaction.

Appendix A. The right-hand sides of (3.14) for j 2, 3, 4 are given by

(A.1)

(A.2)

r2 o(U1, U1) + 2D
ayOrt aT - D Off 2

2D D-- DF 2

+ t,aiU + 2/3o(U, U2) + yo(Ua, U1, Ua),

r4 2D ayaq aT
+ D Da2 0"i- a 2

cv + vcU2 + 2/3o(U U3) + 3Yo(U U, U2)

+ (u, u) + o(U, v, v, u) +/3o(U2, v).

When the solvability conditions for j 3 are satisfied, the solution to the
problem for j 3 is

u +u
+ (Rle13 _+_ Sle2)s13 + (RSee + SRleel)s

+(R-le2 + Sle8)s
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(A.3)

where

OR 09S ) Rle + s+ 8iko R --u--e S --7--e s4 -}- ( 2 2 Se)Xlr

+ (R2Rle + S2Sle)s6 q- 8R1SlxIrls7ele2
09R1 09S

+ 4iko S1 R e2e1s8

09R
+ 2(R2S + R1S2)S9ele2 + 4ikoS --2--sloO2el

092R 09231
+2 R109st 2 e2+S109st 2 e

092R 092S1
+ 2S

092 +2R1 09(2’

hi+ 2 e2+2 -- e2
2 h 2

h3ele2

092R1 0921 )+ 2S1 09" 2 h4 + 2R1 09st 2 h7 ele2

+ 4-- hsele2 + 4-- h6ele2

-+- (R3e q- S3e2)u0 + c.c.] + alt3w;,

031 (Rle + Sle2)ql -+- (R11Rl12e1 + SlS112e2)q2 + (sllg12e2 + gllSll2el)q3
09R 09S )+(Rlel + Sle)2q + 4ikol -7-el e2 qs

-4
092R 092S1)(0911 09aIl )09q 2 e + 09q2 e2 q6 + 4iko 09rt Rlel -Sle209rl q7

(A.4)

09R 09S2+ l(Rzel + Szez)q8 + 2 (Rle + Slez)q9 + 2iko we1 09r

+4
09" --"el + ---e2 g2

e2)g

,,,el+ 2 ;. (Rle q- Sle2)g q- 2iko

094 e2 g5 + 09st 2 el + 09" 2 e2 g6
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02R1
+21 02 el +

02R1
-2iko e

0 T0"0

0 2 e2 g7- 2
OT

+ e20T Xlrlg13

0231
OTO--e2 g14 + c.c.,

]2 2U32 qo + ’tI/’l(IR1 -}" ]S1] )q, + 3q2 + [2(R2K1 + S2Sl)q + c.c.]
02"1 [ ( OR1 0S1 ) ]+ q14 + 4iko 1 ’1 + C.C. q15 + 2XlrlXlr2q16

+
02

+S
02 g8 +c.c.

+
04 g9 + a 2 glo + 1 a 2 gll + 2

O(
g12,

where the equations for p() that appear in the definition of U2 are

pl -DN + copi op o(vo 1
So
Wo

Kps iops Op + gps + Cop;
(A.6) Kp=o(Wa,w;),

Kvp7 Duo (Duo, 1 )Uo,
Pa =Pv,

p9 w; (w;,

and p2() for j 2, 3, 4 satis

2imop2 -Dp + 4kDp2 + cop oP2

(A.7) 2i moP Dp + cop oP o(vo, vo),

DV + 4gp4 + copi

The coefficients q() and &() appearing in the definition of U satis
Kvq p(-ClV + lvO) p( -ClV

Kvq2 3To(Vo,Vo,) + 4fio(Vo,Pl) + 2fio(P2,) 2HoP
(3To(Uo, Vo,) + 4o(Uo,Pl)

+ 2rio(P2,) 2HoPs,

Kq 6To(Vo, Vo,) + 4fio(Vo, p)

+ 4fio(p,) + 4fio(p4, vo) 2HoPs

(6o(vo, vo,) + 4o(vo,pl) + 4o(p,)
+ 4fi0(P4,U0) 2HoP5,

(A.8) Kq6 -4kDp7 + Dvo + (4kDvo, 1)P7 asVo;

Kqv DP5 ( DPs, 1
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(A.9)

(A.10)

),Kwqlo v(-clw0 + alw0

Kwq14 Dw’o ( Dw’o,
b2

Kwq5 =/30(P7,0) -Pl w);

q16 --P6, q4 V0, q5
2

q8 V0,

o
ql 2p’, q12

6
q13 =Pl;

q9 --;

gl --P7, g4 2g5, gll =P, g3 --g7 =P’7/2, g6--P7;

Kvg2 Dps ( Dps. dl )vO;
K.gs 2Dp8 (2Dvo. 41)P8 a9Vo;

H0 b3
Kwg8 Dpl ---P9 + 2/30(p8, Vo) ( Dvo, dl )Pl --W’o;
Kwg9 Dp9 ( Dw’0 bo)P9 b4w’o;
Kwglo Dw’0 blW’o;

Kwg12 Dp6 ( DP6 do ) W’o
K.g3 =Ps (Ps. 1
Kvg14 =P7 (P7, ba)Vo.

The coefficients h.() which appear in the definition of U satisfy

2iwoh -Dh’ + 4kgDha + coh’ ooh =/o(Vo,P8) + Dp2 (Ol)o, l)P2;

2ioooh 2 -Dh’; + 4k20Dh2 + coh’2 aoh2 Dp2;

2i oooh Dh" + cob’3 aoh3 =/30(Vo, p8) + Dp (Dro,

-Dh"4 + 4k20Dh4 + coh’4 coh4 --/30(P8,0) + Dp4 (Dvo, ql)P4;
2i woh Dh" + cob’ aoh Dp

-Dh’ + 4kgDh7 + cob’7 aoh7 =/30(fi8, Vo) + DP4 ( Dvo, d/)l )P4
Dh"6 + 4kDh6 + coh’6 ooh6 Op4.

For j 4,..., 13 the coefficients s.( sc) are given by
p;

ss=p’2 $6-p2, $7-- $9=P3
(A.11) 4

), S =h +h =h +hS4 g(hl + h2 8 5, slo 4 6,

Sll-- 2

and the equations for the remaining s.(sc) are

3io9oS -Ds’ + 9kZoDs + CoS’ aosl

(A.12)

s12 --P4,

S13 h 6 + h7

2/3o(Vo,P2) + yo(Vo,Vo,Vo);
3i 6OoS2 -Ds’ + kDs2 + CoS’2 OoS2

2/3o(Vo,P2) + yo(Vo,Vo,Vo) + 4/3o(Vo,P3);

wos3 -Ds + 9kDs3 + CoS’ aoS3

2/3o(,p2) + yo(Vo, Vo,) + 4/3o(Vo,P4).
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The coefficients in the evolution equations are given by

(A.13)

(A.14)

al ( PCiUo + PluO, 1
a2 (3yo(Vo,Vo,) + 4/3o(Vo,pl) + 2/3o(P2,) 2Hops,

a (6yo(Vo, Vo,) + 4/3o(Vo, p1)
+ 4/3o(P3,) +/3o(P4, Vo) 2Hops,

a 4( Dps, 4, ),

a5 ( Dvo 4kDp7 + 4kp7 ( Dvo, ok1 ), ok1 ),

a6 4( Dps, ch )

av 2(Dp (Dw’o, bo)P, b1)
a8 2((D (Dro, 1))(P7 +P8),

a9 2((3 (Dvo, 4’l))Ps, 4’1);

bl ( Dw’o, Cho),
b2 4(/3o(P7,o) -Pl,

b3 2(DpA -p9 + 2o(P8,o) -pl(Dvo, dpl), dPo),
b4 (Dp9 (Dw’o bo)p9 bo),

b ( DP6 4)0),

b6 4(Dp, t#o);

dl 4(Ho(-q +qT) +Dq2 + 3Yo(P7,o,Vo)
+ 2/3o(q5, Vo) +/3o(Pl,PT),
-4a2(Dvo +PT, bl) 2b2(P, bl) -4(Dvo, thl)(q2,

Dq3
de =4 -Hoq5+ 2

+3y(PT’’v) +2/3(ss’) +2fl(sl’v)

+ flo(Pl, P7), bl)- 2a3(P7, bl) 2(Dvo, bl)(q3,

d 2( 4kDq7 + Dps + flo(q14, Vo), bl) 4ank (PT, 61);
d4 2( -4Dq6 + Dp7 $1) 2as(P7, q01) "+" 8(Duo, qbl)(q6 -Dg14,

d5 8k ( Dq5 + Dq7, oh1 ) + 2koZa4(PT, bl )

8k(Dvo, bl)(q7 + Dg13,

d6 (4Hoq7 + 2Dq 123,o(P7, o, Vo) 8/3o(P7, p4) 8/3o(qls, vo)
8/3o(Ss, o) bl) + 8b2(ps,

8a3((Dvo +P7), bl) 2(Dvo, bl)(q3, b);

d7 =4(Hoq7 +
Dq3

+ 3Yo(Vo,fi7,vO) + 2flo(fi7,p3) + 2flo(ql6,V0)
2
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(A.15)

\
+ 2/3o(S13, t2o), bl)- 2a3(PT,

2(Dt2o, 1)(q3, bl) 2b2(Ps,
d8 (4Hoq7 + 2Dq2 63’0( /1 7 U0 U0 ) 2/3o(/78, P2 )

8/3o(q16, t2o) ql ) 4a2 ( P7, 1 )

2( Ot2o, (]11)(q2’ bl ) + 262 ( Ps, 4’ );
d9 4(Dg3, qb ) + (2a7 + a4) (Dt2o, b ) 2a7 ( P7, bl );

Dp
dao 4(kDg4 + Dq6 ---, 4)1 )

+ 4(Dt2o, 1)((q6 -Dg14), b) 2as(P7
dll 2(Dg +Dg4, b1) 2a9(P7, b) 2(Dt2o, ba)(g4 +gs, ba);
d12 2(Dq c up’7 + vP7, c1 )

2a(Dt2o +P7, b) (qa, 4a)(Dt2o, 1);
d13 (Dq -clup’8 + VcelP8, b) (q, 4,a)(Dt2o,
da4 2(Dq2 + 3yo(P8, t2o, o) + 2/3o(o, h a) + 2/3o(g8, t2o)

+ 2/3o(P8, P), b ) 2(Dt2o, b )(q2, ba ) 2a2 ( P8, 1 )
+ 2Ho(Dt2o, ql)(g3, bl) 2Ho(g7, b);

dis ( Dq2 + 3yo(fi8, t2o, t2o) + 2/3o(fi8, P2) + 4/3o(g8, o), 4’1 )

(Dt2o, bl )(q2, b ) a2 (p8, bl );

d16 4(Dqs +/3o(P7, pg), b ) -4(Dro, ba)(g, b1) 2a7(P8 1);
d17 2(Dg + 2/3o(g9, Vo) b) 2bl(g, bl);
d18 (Dgs, 1) -a9(P8, bl);
d9 -a3(P8, 4’) (Dr20,4’1)(q3,

+ (4/30(P3, fi8) + Dq3 + 63’o(to, to, fig)

+4/3o(g8, o) + 4/3o(h7, o), 4’);
d2o -a3(P8, 4) (Dt2o, bl)(q3, bl)

Dq3
+ (4/3o(Pa,P8) + 6yo(t2o,o,P8) +

4

+ 4/3o(g8, t2o) + 4/3o(h3, Vo),
d21 -a3(P8 bl) (Dr20, bl)(q3,

+ 2Ho(Dt2o, bl)(gl3, bl) 2Ho(g7,
+ (4/3o(t2o, h4) + 6yo(t2o,o,P8)
Dq3

+
4

+4/3(’h3) +4/3(pg’pa)’b);

d22 8( Dg2 + Dq7 120 )

623 8( Og2 -[-- Og5, 1 ) 4(Duo, b )(g2, bl );
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(A.16)

Appendix B. For quasiperiodic waves, the characteristic equation is a fifth-order
polynomial equation corresponding to the matrix

(B.1)

where

A* B* Q* R* C*
* G* T* V* H*

A d

L J* * Y / c*

A* =A + ar0. 2- e(kodr2ko2 + (dr6- dr)kok20. 2

B* B e(iFkod20.2p_ 2

C* =C, H* =H,
0.2 0.2

F2d21F* F + e iFld 2

P P

G* G + e( iFkodi 0.2 2 2F2d21 0. ),

j, j + 2efsrzp,
(B.2) K* K- 2eFkof[k p2,

L* L + e(-ir/of2r 2 + r22f9 2),

Q* 20(ar3 + (--2o(aa- a)2- 201a;

-irl(a + a)o (; + ao)r)),
* (iro(a ) (a{9 ao)r#)o 2,

, d)k2 2k kadT =2(a + e(-2ko(d o

+irl(a; + al)o (a9 + ao)r)),
v* (iro(a-) + (9- ao)r#) 2,

where A, B, C, F, G, H, J, K, and L are defined as in (4.26)-(4.34), and the
quantities with are obtained by interchanging p and , interchanging k and k2,
and replacing F with -F in the quantities with *.
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