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BIOLOGICAL AGGREGATION DRIVEN BY SOCIAL AND
ENVIRONMENTAL FACTORS: A NONLOCAL MODEL AND ITS

DEGENERATE CAHN-HILLIARD APPROXIMATION

ANDREW J. BERNOFF †§ AND CHAD M. TOPAZ‡¶‖

Abstract. Biological aggregations such as insect swarms and bird flocks may arise from a com-
bination of social interactions and environmental cues. We focus on nonlocal continuum equations,
which are often used to model aggregations, and yet which pose significant analytical and computa-
tional challenges. Beginning with a particular nonlocal aggregation model [Topaz et al., Bull. Math.
Bio., 2006], we derive the minimal well-posed long-wave approximation, which is a degenerate Cahn-
Hilliard equation. Energy minimizers of this reduced, local model retain many salient features of
those of the nonlocal model, especially for large populations and away from an aggregation’s bound-
aries. Using the Cahn-Hilliard model as a testbed, we investigate the degree to which an external
potential modeling food sources can be used to suppress peak population density, which is essential
for controlling locust outbreaks. A random distribution of food sources tends to increase peak density
above its intrinsic value, while a periodic pattern of food sources can decrease it.

Key words. partial integrodifferential equation, Cahn-Hilliard, biological aggregation, energy,
minimizer, locust

1. Introduction. This paper has three primary aims. First, beginning with a
partial integrodifferential equation model of biological aggregation, we show that a
long-wave approximation yields a degenerate Cahn-Hilliard equation akin to models
describing phase separation in materials science and evolution of thin fluid films.
Second, we study solutions of the degenerate Cahn-Hillard model and demonstrate
that they compare well with those of the original model. Using the Cahn-Hilliard
model is advantageous because it eliminates many of the analytical and computational
challenges of nonlocal equations, particularly in higher dimensions. Our methodology
is to study the energy minimizers of this local equation, rather than studying the
time evolution of the original nonlocal equation. Finally, we use the Cahn-Hilliard
model as a testbed to assess whether imposing an external potential modeling the
environment, e.g., food sources, can be used to control peak density in aggregations,
which is of interest for locust swarms.

Biological aggregations such as bird flocks, fish schools, and insect swarms are
driven by social interactions between group members. Typical social forces include
attraction, repulsion, and alignment [33, 37] which are preprogrammed by evolution
and which are facilitated by sight, sound, smell, touch, or some combination of these
senses. The accepted biological paradigm is that repulsion operates over shorter dis-
tances than attraction, but that it is much stronger over those distances. In the
context of many mathematical models, these are necessary conditions to achieve co-
hesive groups with finite densities [51, 53].

Because sensing operates over finite rather than infinitesimal distances, it is most
naturally described via nonlocal operators. The most common mathematical descrip-
tions assume that social interactions take place in an additive pairwise manner, and
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2 A.J. BERNOFF AND C.M. TOPAZ

that the strength of interaction of organisms depends on the distance between them.
We will use a kinematic model, where an individual’s velocity is determined by so-
cial interactions dependent on the positions of other organisms; we will eventually
augment this model to allow taxis due to environmental effects.

For a population that is well-described by a continuum density u(x, t), the social
velocity v, can be modeled as

v(x, t) =

∫
f(x− y)u(y, t) dy ≡ f ∗ u. (1)

Because the interactions are pairwise, additive and solely a function of position, the
velocity can be written as the convolution of a social kernel, f , that encodes the
influence of organisms at location y on those at location x. Such convolution-type
continuum aggregation models date back to the seminal work of [49], which examines

u̇+∇ · (uv) = D∇2u, v = f ∗ u, (2)

in one spatial dimension. The left hand side of this equation is the material derivative
of the population density u, that is, the rate of change of the population density
moving at the velocity arising from social interactions. On the right hand side, D
is a diffusion constant. The diffusion term was intended to model social repulsion
operating over short distances, driving flux down population gradients. This model
conserves mass, preserves positivity of the density, and can display an instability from
a homogeneous state to patterned states. However, a key feature of biological swarms
is that they are compactly supported with sharp edges, and (2) cannot reproduce this
property. This is due to the linear diffusion; even compactly supported initial state
are instantaneously smoothed and densities become positive throughout the domain.

More recently, a population model that has received much attention is the aggre-
gation equation,

u̇+∇ · (uv) = 0, v = −∇Q ∗ u, (3)

where the velocity, v, can incorporate both attractive and repulsive social forces. The
social kernel is written as minus the gradient of a social potential, −∇Q. One typically
assumes that the social potential is directionally isotropic and symmetric (the social
force between two organisms is equal in magnitude and opposite in orientation) which
allows us to write the social potential as Q = Q(r), solely a function of the distance
between organisms, r. Typically Q(r) is decreasing for small r to model repulsion,
increasing over larger r to model attraction, and asymptotically flat for large r as
organisms cannot sense each other at large distances.

The aggregation equation has recently been the subject of a rich and rapidly
growing literature, including [10, 12, 13, 15–18, 22, 23, 39, 40, 46–48, 63, 68] and
has also been adapted to describe specific biological organisms, such as locusts [66].
Crucially, (3) minimizes an energy,

E(u) =
1

2

∫ ∫
u(x)Q(|x− y|)u(y) dy dx, (4)

which can be used to analyze the existence and stability of equilibria [8, 9, 30, 39, 61].
Despite its popularity in the literature, one shortfall of this model is that it does not
produce so-called well-spaced groups. In well-spaced biological swarms, individuals
tend to pack only up to a maximum density, and no further. In contrast, for (3), if
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there is a minimizer for a particular mass M , doubling the mass yields a minimizer
with double the density. This is unbiological, and results from the attraction and the
repulsion scaling equally with density.

An alternative aggregation model that does form well-spaced groups is

u̇+∇ · (uv) = 0, v = −∇Qa ∗ u− u∇u, (5)

initially proposed in [65]. While (3) models attraction and repulsion nonlocally, (5)
models attraction nonlocally via a kernel Qa, but models short-range repulsion via the
(local) nonlinear diffusive velocity−u∇u. This model is similar to (2) but incorporates
diffusion that is density-dependent and degenerate. That is, the diffusive flux tends
to zero as the density tends to zero, which allows for compactly supported solutions.

Eq. (5), like (3), allows the formation of compactly supported solutions [3, 24, 65].
It minimizes the energy,

E(u) =
1

2

∫ ∫
u(x)Qa(|x− y|)u(y) dy dx +

1

6

∫
u3 dx. (6)

The nonlinear diffusion has two notable effects. First, because the repulsion domi-
nates at higher densities, the density is bounded as the mass M increases, leading to
aggregations of approximately constant density at large mass [24, 65]. Second, the
introduction of the gradient as part of the repulsion in the social velocity smooths the
density profile at the support’s boundary. Solutions are continuous with a discountin-
uous gradient, often referred to as a non-zero contact angle. Further work on (5), and
on a generalization incorporating repulsion of the form −up∇u, has examined exis-
tence and uniqueness [4, 5, 21], regularity [32], global attractors [41], and properties
of steady states as a function of the power p of the nonlinear repulsion [24].

Despite the promise of (5) as a model, it poses significant challenges. Beyond
the analytical difficulties associated with the nonlocal operator, even numerical sim-
ulation is problematic. First, for 2-d simulation on an n × n grid, the convolution
requires O(n4) operations for quadrature or O(n2 log n) for pseudospectral evaluation.
Second, the steady states of (5) can have steep edges, like some steady states of (3).
These require a high degree of spatial resolution. Third, standard methods produce
oscillations emanating from the contact points, and such artifacts must be eliminated.
Fourth, and relatedly, a numerical scheme must preserve the positivity of the model.
It is notable but perhaps not surprising that fully two dimensional simulations of (5)
are rare in the literature [29, 65]. At present, most published simulations are either in
1-d or in a radially symmetric 2-d geometry. This is true of (3) as well, excepting spe-
cial cases where the computation reduces to a boundary integral problem describing
the motion of a self-deforming curve [17, 64]. Given the attractive features of (5) from
a modeling perspective, and yet given the analytical and computational challenges,
we investigate whether there exists a simpler, local model that nonetheless preserves
important features of (5).

In summary of this discussion, (5) produces groups whose density is bounded
as mass M increases but the model is difficult to analyze and simulate. There is
a long mathematical history of approximating dynamics in the limit of slow varia-
tion to simplify governing equations [35, 59]. As we will describe in detail in this
paper, an expansion of the convolution in (5) the long-wave limit yields, after non-
dimensionalization,

Qa ∗ u ≈ −u−∇2u. (7)
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Retaining only the first term in this expansion yields a nonlinear diffusion equation

u̇+∇ · (uv) = 0, v = (1− u)∇u, (8)

which is ill-posed due to negative (backward) diffusion at small densities. However,
retaining the second term in the expansion yields stabilizing fourth-order degenerate
diffusion. We will concentrate on this degenerate fourth-order equation,

u̇+∇ · (uv) = 0, v = −u∇u+∇(u+∇2u). (9)

It is curious that for this model, well-posedness at short wavelengths comes from the
fourth-order term derived from nonlocal attraction. As attraction operates at longer
wavelengths than repulsion, one must retain higher derivatives to model it faithfully.
Mathematically, the fourth-order term describes attractive forces that are responsive
not only to variations in density but to the convexity of the density. This yields a
social force analogous to a surface tension, and has the effect of damping variation in
the density. A moment expansion similar to the approximation (7) is used to derive
a different model for the movement of ecological populations in [52].

A great deal is known about (9). As we will discuss below, it is related to both the
Cahn-Hilliard equation [56] which arises as a model of phase separation and to thin-
film equations which model surface-tension driven wetting of a substrate by a viscous
fluid [34, 55, 59]. While the existence theory for our model is more strongly related
to previous work on thin film equations, the dynamics are akin to phase separation
and therefore we refer to our model as a Cahn-Hilliard model. Our model (9) also
may be considered a degenerate Sivashinsky equation [57, 62].

After nondimensionalization, (9) is equivalent to

u̇ = ∇ ·
(
u∇
[
u2

2
− u−∇2u

])
, (10)

which reveals a little more of its structure. It is the composition of a negative-definite
second-order self-adjoint operator (∇ · u∇) with the first variation of an energy,

E(u) =

∫
1

2
|∇u|2 − u2

2
+
u3

6
dx. (11)

This equation is an example of the more general class of Cahn-Hilliard models [56]
which take the form,

u̇ = ∇ ·
(
M(u)∇

[
f(u)−∇2u

])
. (12)

Here, M(u) is a non-negative mobility, so∇·M(u)∇ is a negative-definite second-order
self-adjoint operator. The equation minimizes an energy

E(u) =

∫
1

2
|∇u|2 + F (u) dx, (13)

where F (u) =
∫
f(u) du is most commonly taken to be a double well potential in the

Cahn-Hilliard literature. Eq. (12) was first developed in [25, 28] to describe binary
alloys. A hallmark of this model is that it exhibits phase separation, where the density
segregates into regions in which u assumes one of the two minimum values of F , and
these regions are separated by narrow transition layers [26, 27, 43].
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Our model (10) borrows a feature more familiar in the thin film context. Bio-
logically, the density u must remain nonnegative, much like a fluid film thickness. In
our model, this constraint is enforced by the degenerate mobility M(u) ≡ u. This
feature not only ensures that the density remains nonnegative, but it also allows re-
gions of zero density, akin to dry spots in fluid films. Degenerate mobilities have been
considered in both the Cahn-Hilliard context [38, 56] and in the thin films context
[6, 7, 11, 14, 19, 20, 42, 45, 50].

The work in [58] nicely summarizes and extends the analytical progress that has
been made over the past two decades on a class of thin film equations including
(10), primarily in one spatial dimension. For our model in one dimension, [58] shows
that there exist nonnegative solutions with compact and potentially disjoint support.
Where u is positive, these solutions are infinitely differentiable. Moreover, these
solutions are continuously differentiable everywhere. Stated differently, the slope at
the contact point, where u touches down to zero, is zero. Additionally, the touchdown
is generically quadratic and the speed of propagation of the contact points is finite. To
our knowledge, theory for uniqueness and existence in higher dimensions is lacking.
Still, motivated by these one dimensional results, we will primarily consider solutions
that are infinitely differentiable for positive values and touch down with zero contact
slope.

The rest of this paper is organized as follows. In Section 2, we perform a long-
wave expansion of (5) leading to the degenerate Cahn-Hilliard equation (9), augment-
ing both models with an external potential describing the environment. Section 3
calculates the linear stability of the two models, builds a framework for examining
them as energy minimization problems, and describes how numerical computation of
minimizers will be performed. Section 4 studies in detail the minimizers for the case
of no external potential. In brief, minimizers of both models share many properties,
including compact support and a common peak density in the large mass limit. With
the Cahn-Hilliard model established as a reasonable approximation of the nonlocal
one, in Section 5 we consider an external potential and show that when a potential
well is sufficiently steep, it can be replaced with an approximate obstacle potential
consisting of regions where the potential is zero separated by inhibited regions where
the potential is effectively infinite. Finally, Section 6 uses these obstacle potentials
to investigate how peak population density is affected by resource distribution. A
random distribution of resources tends to increase peak density above its intrinsic
value while a periodic distribution can decrease it.

2. Derivation of the local model. We begin with the nonlocal model of [65]
augmented with an external potential W (x) which models taxis due to environmental
factors,

u̇+∇ · (uv) = 0, v = −∇Qa ∗ u−Ru∇u−∇W, (14)

where u(x, t) is the population density and x ∈ Rn. The parameter R > 0 controls
the strength of short-range repulsion. For now, we assume the potential W to be
continuously differentiable, although eventually we will consider a discontinuous limit.
The kernel Qa in the convolution above describes social attraction over finite (rather
than infinitesimal) distances. We place several assumptions on this kernel:

1. Qa is radial, that is, Qa ≡ Qa(r), r = |x|. This is the case for social interac-
tions that are isotropic in space.

2. Q′a(r) ≥ 0 so that Qa describes (pure) attraction.
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3. As |r| → ∞, Qa approaches a constant since organisms at very long distances
do not interact with each other. Without loss of generality, we assume Qa → 0
as |r| → ∞.

4. Qa ≤ 0 as a result of the previous two assumptions.

This is a dimensioned model; by rescaling x, t, and u, we may write a dimensionless
version of (14) as

u̇+∇ · (uv) = 0, v = −∇Qa ∗ u− u∇u−∇W, (15)

where we have chosen R = 1. Also, we choose our nondimensionalization such that
Qa has unit volume, that is,

M0 =

∫
Rn

Qa(r) dx = −1, (16)

where M0 denotes the zeroth moment. In addition, we specify the second moment of
the potential in order that Qa has a length scale of order unity. This condition is

M2 =

∫
Rn

Qa(r) r2 dx = −2n. (17)

This rescaling, which we take without loss of generality, will be convenient for our
subsequent calculations.

Presently, we will approximate (15) with a local partial differential equation by
applying the convolution theorem to −∇Qa ∗u and performing a long-wave expansion
in Fourier space [51, 54]. Define the Fourier transform of a function f(x),

F(f) = f̂ =

∫
Rn

f(x)e−ik·x dx. (18)

Since our kernel Qa is radial in physical space, its Fourier transform is radial in the
transformed variable k. So

Q̂a(k) =

∫
Rn

Qa(r)e−ik·x dx, (19)

where k = |k| and r = |x|. Expanding the complex exponential,

e−ik·x =

∞∑
m=0

(−i)m (k · x)m

m!
= 1− ik · x− 1

2
(k · x)2 + · · · , (20)

and substituting into (19) will yield a moment expansion for Q̂a. We will retain only
the first three terms of this expansion. For the first term,∫

Rn

Qa(r) dx = M0 = −1, (21)

due to our choice of scaling. For the second term,

− i
∫
Rn

(k · x)Qa(r) dx = 0, (22)
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because the term linear in k vanishes due to symmetry; in fact, all terms odd in k
vanish. Finally, for the third (quadratic in k) term, we have

− 1

2

∫
Rn

(k · x)2Qa(r) dx = −1

2

n∑
p=1

n∑
q=1

kpkq

[∫
Rn

Qa(r)xpxq dx

]
, (23a)

= −1

2

n∑
p=1

k2
p

[∫
Rn

Qa(r)x2
p dx

]
, (23b)

= −1

2

n∑
p=1

k2
p

[
1

n

∫
Rn

Qa(r)r2 dx

]
, (23c)

= − k
2

2n
M2, (23d)

= k2. (23e)

Here, the right hand side of (23a) expands the square of the dot product as a double
sum, (23b) utilizes symmetry to recognize the vanishing non-diagonal moments, (23c)
uses radial symmetry of Qa, (23d) substitutes the definition of M2, and (23e) uses
the normalization of M2 in (17).

Putting these results together,

Q̂a = −1 + k2 +O(k4), (24)

and therefore, we approximate

Qa ∗ u ≈ −u−∇2u, (25)

which constitutes a long-wave approximation. With this approximation, the original
governing equation (15) becomes the new, local equation

u̇+∇ · (uv) = 0, v = ∇(u+∇2u−W )− u∇u. (26)

This equation may be rearranged as

u̇ = ∇ ·
(
u∇
[

1

2
u2 +W − u−∇2u

])
, (27)

which is a Cahn-Hilliard equation of type (12) with degenerate mobility M(u) = u,
f(u) = u2/2 − u, and an external potential W (x). We will explore the degree to
which minimizers of this truncated model approximate those of the nonlocal model
(15). While the former are easier to compute owing to the purely local interaction
rules, it is important to realize what is lost in the local approximation. In (15),
disjoint clumps of density interact with each other exponentially weakly owing to the
nonlocality. However, in (27), disjoint clumps do not interact at all owing to the local
behavior and degenerate diffusion.

3. Basic model characteristics. To recapitulate, we are studying the nonlocal
model

u̇ = ∇ ·
(
u∇
[
Qa ∗ u+

1

2
u2 +W

])
, (28)
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and the degenerate Cahn-Hilliard equation which is a long-wave approximation to it,

u̇ = ∇ ·
(
u∇
[
−u−∇2u+

1

2
u2 +W

])
, (29)

where u(x, t) is a non-negative density. To complete the formulation of the problem,
one must specify the domain, the boundary conditions, the external potential W and
initial conditions for the density u. For much of this paper we consider all of Rn or
periodic domains in one and two dimensions. Solutions to problems with degenerate
diffusion often have compact support [2, 42, 69]. For the Cahn-Hilliard problem (29)
we expect u(x, t) to be continuously differentiable everywhere and infinitely differen-
tiable for all x in the support of u. For the nonlocal model (28), we expect u(x, t)
may have jump discontinuities at the edge of its support, but will be infinitely dif-
ferentiable for all x in the support of u [8, 9]. Leveraging the compact support of
the solution, when we wish to consider densities confined to a finite domain rather
than specifying boundary conditions at the edge of a domain, we will either consider
a large periodic domain or we will specify that W (x) is sufficiently large to drive the
density to zero except in some subdomain of interest.

Both models are conservation laws which are well known to conserve total mass
(see, e.g., [65]). If

M =

∫
Ω

u dx, (30)

where Ω is the domain (or the support of the solution) then

dM

dt
= 0. (31)

For many problems with a reflection symmetry, including our models (28) and
(29), the location of the center of mass will also be conserved when the domain is Rn
and the mass is finite. In this case, for both (28) and (29), if we define

X =
1

M

∫
Ω

xu dx, (32)

a straightforward calculation shows that

dX

dt
=

1

M

∫
Ω

xu̇ dx = − 1

M

∫
Ω

u∇W dx, (33)

from which we deduce that in the absence of an external potential, the center of mass
will be stationary. In the presence of an external potential, mass tends to migrate
towards minima of the potential.

3.1. Linear stability. In the absence of an external potential (W = 0), both
(28) and (29) admit steady states with constant density ū ≥ 0. To analyze their linear
stability, let u(x, t) = ū+ ũ(x, t), linearize the equations in ũ, and let ũ ∝ eik·x+σ(k)t

(k = |k|) to yield the dispersion relation σ(k). For both models, σ(0) = 0 for all ū
because the models are of conservation form [35].

For the nonlocal model (28),

σ(k) = −k2ū
[
ū− Q̂a

]
, (34)
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a result also stated in [65]. The Fourier transform of the attractive kernel Qa depends
on spatial dimension. From our nondimensionalization in Section 2,

Q̂a = −1 + k2 +O(k4). (35)

This guarantees that the dispersion relations for (28) and (29) are identical to O(k4).
To further analyze the model one must specify Qa. A commonly used example

which we also adopt is the Laplace potential. In our nondimensionalization, this
potential is

Qa(x) = −c1e−c2|x|, (36)

where

c1 =

√
π

Γ
(
n+1

2

) (n+ 1

8π

)n/2
, c2 =

√
n+ 1

2
, (37)

in which case

Q̂a(k) = −
(

1 +
2k2

n+ 1

)−n+1
2

, (38)

which is a power of the Lorentzian function. We see that Q̂a(0) = −1 and Q̂a(k) is
increasing in k, and tends to zero. Consequently, if ū > 1, σ(k) < 0 for all k > 0 and
the homogeneous steady state is linearly stable. However, if ū < 1, there is a long-
wave instability. There exists a finite, continuous band of wave numbers extending
from k = 0 to

k =

√
n+ 1

2

(
ū−2/(n+1) − 1

)
, (39)

for which σ(k) > 0.
For the Cahn-Hilliard model (29), the calculations are significantly simpler. We

obtain

σ(k) = −k2ū
[
(ū− 1) + k2

]
. (40)

The stability theory is analogous to the nonlinear model. If ū > 1, σ(k) < 0 for all
k > 0 and the homogeneous steady state is linearly stable. However, if ū < 1, there
is a long-wave instability. There exists a finite, continuous band of wave numbers
extending from k = 0 to k =

√
1− ū for which σ(k) > 0.

It is worthwhile to consider why a fourth-order truncation of (28) is superior to
a second-order one. For a second-order truncation, the dispersion relation is simply

σ(k) = −k2ū(ū− 1). (41)

The stability threshold is still ū = 1 as above. However, in the linearly unstable
regime, all modes have positive growth rates which grow unboundedly with k, sim-
ilar to the backwards heat equation. Thus, the linear problem for the second-order
truncation is ill-posed in this case, shedding light on why an approximation to fourth
order is desirable. Our fourth-order truncation is analogous to the strategy used in
deriving amplitude equations for marginally long-wave unstable systems via modula-
tion theory [35]. Retaining the destabilizing second-order and stabilizing fourth-order
terms yields the most parsimonious truncation that is linearly well-posed.
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3.2. Energy. We will show that both the nonlocal model (28) and the Cahn-
Hillard model (29) can be interpreted as gradient flows. Both may be written in the
form

u̇ = ∇ · u∇ [Lu+ f(u) +W ] , (42)

where L is a linear operator. For (28), Lu = Qa ∗ u and for (29), Lu = −∇2u − u.
For both models, f(u) = u2/2. In (42), ∇ · u∇ is a negative-definite self-adjoint
second-order operator on non-negative functions u.

We now define quantities useful for constructing an energy. First, define a sym-
metric quadratic form for which Lu is the first variation. For (28) define

Q[u, v] ≡ 1

2

∫
Ω

uQa ∗ v dx =
1

2

∫
Ω

∫
Ω

Qa(|x− y|)u(x)v(y) dx dy, (43)

and for (29) define

Q[u, v] ≡ 1

2

∫
Ω

∇u · ∇v − uv dx. (44)

Next, choose

F (u) ≡
∫

Ω

u3/6 dx, (45)

whose first variation is f(u).
The total energy for both models is

E(u) = Q[u, u] + F (u) +

∫
Ω

Wudx. (46)

The first variation of the energy is

δE

δu
= Lu+ f(u) +W, (47)

and both evolution equations can be written as

ut = ∇ · u∇
[
δE

δu

]
. (48)

It follows that the evolution is a gradient flow in a weighted metric [8, 9, 30, 42, 61, 67].
The time derivative of the energy is

dE

dt
=

∫
Ω

δE

δu
ut dx, (49a)

=

∫
Ω

δE

δu
∇ · u∇δE

δu
dx, (49b)

= −
∫

Ω

u

∣∣∣∣∇δEδu
∣∣∣∣2 dx. (49c)

Consequently, energy is decreasing except for stationary states where δE/δu is con-
stant on the support of the solution.
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3.3. Energy minimization and numerics. Because our governing equations
are gradient flows, we expect almost all initial conditions to evolve to energy minimiz-
ers. We exploit energy minimization to explore the equilibria of both models, namely
(28) with the Laplace potential (36), and (29). This strategy plays a prominent role
for the remainder of this paper. In order for a solution u to be an equilibrium, it
must minimize the energy (46), satisfy the appropriate mass constraint, and be non-
negative. In summary, the constrained minimization problem is

min
u(x)

E(u) ≡ Q[u, u] + F (u) +

∫
Ω

Wudx, (50a)

subject to the constraints: ∫
Ω

u dx = M, (50b)

u(x) ≥ 0 for all x ∈ Ω. (50c)

We solve this problem using the fmincon minimization routine of Matlab’s opti-
mization toolbox, which accepts an objective function as well as constraints. We use
periodic domains in one and two dimensions with equally spaced grid points. For the
nonlocal model on a periodic domain, we replace the attractive potential Qa with its
periodized analog and evaluate the convolution in Q via matrix multiplication. For
the Cahn-Hilliard model, we evaluate derivatives using a centered difference on each
interval in one dimension, or each cell in two dimensions. To aid convergence of the
algorithm, we also supply the minimization algorithm with the gradient of our col-
located approximation of the energy. We typically choose a random initial condition
to seed the algorithm. Sometimes we solve the minimization problem on a coarse
grid and then refine the grid by factors of two in order to obtain highly-resolved final
states.

Our methodology neglects the dynamics of the approach to equilibria, and relat-
edly, the issue of whether those equilibria are accessible on relevant biological time
scales. Nonetheless, we see the exploration of minimizers as an important first step
in understanding (28) and (29).

4. Energy minimizers in the absence of an external potential.

4.1. Motivation and numerical computations. Recalling that the nonlocal
equation (28) and the degenerate Cahn-Hilliard equation (29) have steady, compactly
supported solutions and motivated by the aggregation of biological organisms, we now
study the simplest case of a single clump having total mass M on an effectively infinite
domain with no external potential (W = 0). A phase plane analysis of (28) suggests
that in one spatial dimension, for each mass M , there is a single energy-minimizing
clump [65]. For a generalization of (28) to diffusion of power-law form, rigorous proofs
show existence and uniqueness in higher dimensions, subject to appropriate assump-
tions [3, 5]. Similarly, degenerate Cahn-Hilliard models such as (29) are gradient flows
that minimize an energy; see [50, 56] and references therein. Our primary strategy
for studying (28) and (29) will be to exploit energy minimization.

To begin, we numerically compute minimizers as described in Section 3, varying
total mass M as our parameter for both models, and in both one and two dimen-
sions. When varying M , we choose values of domain length L such that the spatially
homogeneous solution is linearly unstable to a single mode. Strictly speaking, the
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Fig. 1. Numerically calculated energy minimizers in one dimension. The nonlocal model
result for (28) appears as a dashed curve, and the Cahn-Hilliard model result for (29) appears as a
solid curve. (a) Mass M = 4, periodic domain length L = 40, calculated with N = 400 grid points.
The minimizers have a well-defined peak. (b) M = 35, L = 40, N = 400. The minimizers have a
plateau of peak density ‖u‖∞ ≈ 1.5, and the two models coincide well except in the transition region.

minimizers of the nonlocal model (28) are affected by their periodic images in our
computation. In practice, with our choice of attractive potential (36), these effects
are exponentially small and invisible on the plots shown. For the Cahn-Hilliard model
(29), the compactly supported solution does not interact with its periodic images.

For both models in one dimension, example minimizers appear in Figure 1.
Panel (a) compares small mass solutions and (b) compares large mass solutions. The
small M solutions have well defined peaks, whereas the large M solutions acquire a
plateau-like structure; they are all compactly supported. The computational results
for (28) and (29) differ at small masses, but coincide for large M , except in the tran-
sition region. Figure 2 scans two key properties of the clumps as a function of M ,
namely the peak density ‖u‖∞ and the size of the support ‖ supp(u)‖. The peak den-
sity increases but saturates to a value of 1.5 with increasing M ; we will later analyze
this important property. The support increases with M , and the growth appears to
be linear at large M (as we later confirm).

Example minimizers in a fully two dimensional geometry appear in Figure 3. The
minimizers are radially symmetric. Panels (a) and (b) show clumps for small mass
M for (28) and (29) respectively. To give a better sense of the mass distribution,
Figure 4(a) shows the radial profiles for (28) (dashed) and (29) (solid). Figures 3(c)
and (d) and Figure 4(b) are analogous, but for large M . The results are similar to the
one dimensional case. At small M , the clumps have a well-defined peak and at large
M , they have a plateau of density ‖u‖∞ ≈ 1.5. The two models agree well, especially
for large M .

To better understand these results, it is helpful to analyze the steady state prob-
lem. To find conditions for energy minimizers, we recall the discussion of [8, 9]. Let

u(x) = ū+ δu. (51)

Here, ū is an equilibrium solution of fixed mass M and δu is a small perturbation of
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Fig. 2. Properties of energy minimizers of the nonlocal model (28) (shown as squares) and the
Cahn-Hilliard model (29) (shown as circles). For each mass M , and for both models, we calculate
a minimizer on a periodic domain of length L (increasing with M so as to be effectively infinite)
using 10L grid points. The dashed and solid curves are to guide the eye. The two models agree well
for large M . (a) Peak density ‖u‖∞ increases with M and saturates to a constant value of 1.5.
(b) The size of the support, ‖ supp(u)‖, increases and grows linearly at large M .

zero mass, so that overall mass is conserved. Thus,∫
Ω

ū dx = M,

∫
Ω

δu dx = 0, (52)

where Ω is the support of ū. Then to leading order, the difference in energy between
the equilibrium solution and the perturbed one is

∆E ≡ E(ū+ δu)− E(ū) ≈
∫

Ω

δE

δu
· δu dx. (53)

In order for the energy to be stationary, ∆E must vanish for all perturbations δu.
As δu has zero mass, a necessary and sufficient condition is that δE/δu in (53) is a
constant, which we call λ. That is,

δE

δu
= λ, (54)

in the support of u. The quantity λ has a physical interpretation: it is the energy
per unit mass at each point in space [8, 9]. The condition (54) is necessary for u to
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Fig. 3. Numerically calculated energy minimizers in two dimensions. Density u is indicated
by color. Minimizers of the nonlocal model (28) appear in (a) and (c), and minimizers of the Cahn-
Hilliard model (29) appear in (b) and (d). (a,b) Mass M = 70, periodic box side length L = 40,
calculated with N = 160 × 160 grid points. The minimizers have a well-defined peak. (c,d) Like
(a,b) but M = 600.

be a minimizer. For sufficient conditions, one must examine the continuation of λ
outside of the support as well as the second variation of the energy. These ideas are
discussed at length in [8, 9]. While we have presented numerical results thus far, for
the remainder of this section, we analyze the minimizers of (28) and (29).

4.2. Minimizers of the nonlocal equation in one dimension. For (28), the
energy (46) in one dimension becomes

E(u) =

∫
Ω

1

2
u[Qa ∗ u] +

1

6
u3 +Wudx. (55)

From (47) and (54), and for W = 0, minimizers satisfy

δE

δu
=

1

2
u2 +Qa ∗ u = λ. (56)

To make analytical progress, we consider the small and large mass limits in turn, with
some ideas following [24, 65].

When M is small, the characteristic length scale of the solution is small. Taylor
expand the kernel as

Qa ≈ −
1

2
(1− |x|). (57)
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Fig. 4. Radial profiles of the radially-symmetric two dimensional minimizers in Figure 3.
Minimizers of the nonlocal model (28) are dashed, and for the Cahn-Hilliard model (29), solid.
(a) Radial profiles for Figure 3(a,b). (b) Radial profiles for Figure 3(c,d). The plateau-like structure
has peak density ‖u‖∞ ≈ 1.5.

Under this approximation, (56) becomes

1

2
u2 − M

2
+

1

2
|x| ∗ u = λ, (58)

where we have used the fact that 1 ∗u = M . Since (|x|)xx = 2δ(x), differentiate twice
to obtain (

u2

2

)
xx

+ u = 0. (59)

Without loss of generality, place the maximum of u at the origin; this implies ux(0) = 0

by symmetry. For convenience, rescale u by u(0) = ‖u‖∞ and x by ‖u‖1/2∞ . Let

p = u/‖u‖∞ and ξ = x/‖u‖1/2∞ , yielding

(p2)ξξ + 2p = 0, p(0) = 1, pξ(0) = 0. (60)

Multiply by (p2)ξ, integrate once, and apply the conditions at ξ = 0 to obtain the
constant of integration, leading to

p2
ξ =

2

3

(
1

p2
− p
)
. (61)

Take the square root of both sides and separate variables to find an implicit solution,

ξ =

√
3

2

∫ 1

p

p dp√
1− p3

. (62)

As p→ 0, ξ approaches the half-width in our rescaled variable, which implies

‖ supp(u)‖ = 2‖u‖1/2∞

[√
3

2

∫ 1

0

p dp√
1− p3

]
=

√
6

π
Γ

(
5

6

)
Γ

(
2

3

)
‖u‖1/2∞ . (63)
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The mass constraint is

M = 2

∫ ‖ supp(u)‖/2

0

u(x) dx =
√

6‖u‖3/2∞
∫ 1

0

p2 dp√
1− p3

=

√
8

3
‖u‖3/2∞ . (64)

By combining (63) and (64), write ‖ supp(u)‖ and ‖u‖∞ as functions of mass M ,

‖u‖∞ =

(
3

8

)1/3

M2/3 ≈ 0.721M2/3, (65a)

‖ supp(u)‖ =

√
6

π
Γ

(
5

6

)
Γ

(
2

3

)(
3

8

)1/6

M1/3 ≈ 1.794M1/3. (65b)

For large mass, recall from Figures 1 and 2 that solutions approach wide plateaus
with peak density ‖u‖∞ ≈ 1.5. To understand this behavior, we analyze the large M
limit. When M is large, spatial scales are large. Thus Qa ≈ −δ(x) and (56) becomes

δE

δu
=

1

2
u2 − u = λ, (66)

from which it immediately follows that u is constant on the support of the solution. To
determine what value that constant has, explicitly minimize the energy (46) subject
to the mass constraint. The energy is∫

Ω

u3

6
− u2

2
dx =

(
u3

6
− u2

2

)
‖ supp(u)‖, (67)

However, the mass constraint dictates that for a this solution, ‖ supp(u)‖ = M/u,
which we substitute to obtain

E = M

(
u2

6
− u

2

)
. (68)

Thus

dE

du
= M

(
u

3
− 1

2

)
, (69)

which yields the critical point u = 3/2. Since the solution is constant, ‖u‖|∞ = 3/2,
and ‖ supp(u)‖ = 2M/3. A curious feature of the approximation we have used is that
it is invariant under any area-preserving map of the spatial domain; put differently,
the approximation suggests that any arrangement of disjoint clumps having constant
density u = 3/2 has the same energy. However, we know there is an energetic cost for
each clump (neglected in our analysis) proportional to the measure of its perimeter.
Thus, we expect that the global minimizer is a rectangular profile of density u = 3/2.

4.3. Minimizers of the Cahn-Hilliard equation in one dimension. For
the Cahn-Hilliard model (29), the energy (46) in one dimension becomes

E(u) =

∫
Ω

1

2
u2
x −

1

2
u2 +

1

6
u3 +Wudx. (70)

As discussed in Section 1, (29) has compactly supported solutions with zero contact
slope. Here, we establish that energy minimizers share this property. We derive this
result in one dimension, though one may extend the calculation to higher dimensions.
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Consider an energy-minimizing solution ū(x) with a support x ∈ [α, β]. We
compute the first variation with respect to changes in the endpoints in addition to
the solution itself. Let α = ᾱ + δα , β = β̄ + δβ, u = ū + δu. Computing the first
variation of the energy, we find

δE =

∫ β̄

ᾱ

δE

δu
· δu dx+

[ux(β̄)]2

2
· δβ − [ux(ᾱ)]2

2
· δα, (71)

where

δE

δu
=

1

2
u2 − u− uxx +W. (72)

In deriving (71), we have used the fact that u vanishes at the endpoints x = ᾱ and
x = β̄. For δE to vanish, it is necessary that ux(ᾱ) = ux(β̄) = 0. To see this, choose
δu = 0 and suppose ux(ᾱ) and ux(β̄) are nonzero. In this case, choosing δα > 0 would
reduce the energy, as would choosing δβ < 0. (The change in mass resulting from this
shifting of the endpoints slightly into the support is a second-order effect.) However,
this violates the assumption that ū is a minimizer. Therefore, ux(ᾱ) = ux(β̄) = 0.
Throughout much of the rest of our analysis of (29), we make use of the result we
have just shown, namely that energy-minimizing solutions have zero contact slope.

From (47) and (54), and for W = 0, minimizers satisfy

δE

δu
=

1

2
u2 − u− uxx = λ. (73)

This differential equation has arisen previously in studies of the Cahn-Hilliard equa-
tion [44] and the thin film equation [50] and has solutions that can be expressed in
terms of elliptic functions. Multiply through by ux, integrate once, and enforce that
the energy minimizing solution has zero contact slope to obtain

u3

6
− u2

2
− λu− u2

x

2
= 0. (74)

By symmetry, ux(0) = 0 from which it follows that

u

(
u2

6
− u

2
− λ
)

= 0, (75)

at the center of the clump solution. Therefore, we know the relationship between
‖u‖∞ and λ, namely

λ =
1

6
‖u‖2∞ −

1

2
‖u‖∞. (76)

We derive expressions for the size of the support of the solution ‖ supp(u)‖ and for
the mass M in terms of ‖u‖∞. For convenience, rearrange (74) as

(
du

dx

)2

=
u3

3
− u2 − 2λu. (77)
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For ‖ supp(u)‖, we have

‖ supp(u)‖ = 2

∫ ‖ supp(u)‖/2

0

dx, (78)

= 2

∫ ‖u‖∞
0

du

du/dx
, (79)

= 2

∫ ‖u‖∞
0

du√
u3

3 − u2 − 2λu
, (80)

=
12√

9− 3‖u‖∞
K

(√
‖u‖∞

3− ‖u‖∞

)
, (81)

where K represents the complete elliptic integral of the first kind. For mass M we
have

M = 2

∫ ‖ supp(u)‖/2

0

u dx, (82)

= 2

∫ ‖u‖∞
0

u du

du/dx
, (83)

= 2

∫ ‖u‖∞
0

u du√
u3

3 − u2 − 2λu
, (84)

= 4
√

9− 3‖u‖∞
[
K

(√
‖u‖∞

3− ‖u‖∞

)
− E

(√
‖u‖∞

3− ‖u‖∞

)]
, (85)

where E represents the complete elliptic integral of the second kind. As ‖u‖∞ increases
from 0 to 3/2, the mass M increases from 0 to infinity, as seen in Figure 2(a).

Ideally, we would invert these relationships to solve for ‖u‖∞ and ‖ supp(u)‖ as a
function of M , but this is cumbersome due to the elliptic integral functions. Therefore,
as we did previously for the nonlocal model (28), we will analyze the small and large
mass limits, which yield simple explicit expressions for ‖u‖∞ and ‖ supp(u)‖.

For small masses, neglect the nonlinear term in (73) to obtain

u+ uxx = −λ, (86)

As mentioned above, the solution that minimizes E has zero contact angle and must
also respect the mass constraint. Up to translation, the unique solution is

u(x) =

{
M
2π (1 + cosx) |x| ≤ π
0 |x| ≥ 0

. (87)

Thus, ‖u‖∞ = M/π and ‖ supp(u)‖ = 2π.
For large masses, the uxx term in (73) is negligible and the solution is identical

to the large mass limit of the nonlocal case considered above. That is, as M → ∞,
‖u‖∞ → 3/2 and ‖ supp(u)‖ → 2M/3.

4.4. Minimizers in two dimensions. We briefly discuss the small and large
mass limits in two dimensions. The small mass limit for the nonlocal model (28)
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is difficult to compute explicitly because of convolution with the kernel Qa ∝ e−|x|.
An alternative approach is to use a different kernel such as the Bessel kernel used in
[24, 31]. For our kernel, numerical explorations and a scaling argument both suggest
that in the limit M → 0, ‖ supp(u)‖ and ‖u‖∞ both approach zero in a fashion
analogous to the problem in one dimension. The small mass limit for the Cahn-Hilliard
model (29) is also analogous to its corresponding one dimensional case, satisfying

u+∇2u = −λ. (88)

The solution is

u(r) =


M

πr2∗

[
1− J0(r)

J0(r∗)

]
r ≤ r∗

0 r ≥ r∗
, (89)

where the radius of the support, r∗, is the first zero of J1(r), and J0 and J1 are Bessel
functions of the first kind. The support and peak density are

‖ supp(u)‖ = πr2
∗, ‖u‖∞ =

M

πr2∗

[
1− 1

J0(r∗)

]
. (90)

The large mass calculations for two dimensions are nearly identical to those for
one dimension. For (28) and (29) as M → ∞, ‖u‖∞ → 3/2 and the minimizer is a
disc of density u = 3/2, having radius

r =

√
2M

3π
. (91)

We highlight two key results from this section. First, the Cahn-Hilliard model
(29) approximates the nonlocal model (28) well, especially for large masses and away
from an aggregation’s boundaries. Second, in the limit of large mass, both models
produce groups with an energetically preferred peak density of 3/2. This value is
the benchmark against which we address a biologically motivated question: can an
external potential modeling the environment be used to reduce the peak density of an
aggregation?

5. Energy minimizers in an external potential well. With (29) established
as a reasonable approximation of (28), at least for large enough masses and away
from transition regions, we now use the degenerate Cahn-Hilliard model as a testbed
to investigate the effects of the environment; that is, we now allow W 6= 0. More
specifically, we focus on cases where W is a potential well, and show that when this
well has sufficiently tall and steep sides, it can be replaced by an approximate obstacle
potential that is either zero or a sufficiently large, and in fact effectively infinite,
constant. In this scenario, the support of a minimizer is constrained to avoid locations
where W is large. For the remainder of this paper, we simply refer to “obstacle
potentials,” but remind the reader that in our computational implementation, these
are approximate obstacle potentials with large, rather than infinite, height.

The velocity in (29) only depends on the gradient of W . Furthermore, adding a
constant to W affects the energy (70) by adding a multiple of the conserved mass.
Therefore, W is arbitrary up to a constant. Without loss of generality, take the
minimum value of W to be zero. As a prototypical example, consider a Gaussian
barrier placed at each end of the interval [0, L], that is,

W (x) =
A

2
√
πσ

(
e−x

2/4σ2

+ e−(L−x)2/4σ2
)
, (92)
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where A measures the volume of the barriers and σ is the characteristic width.

Figure 5 shows the ensuing minimizers of (29). Panel (a) varies the height A
with fixed width σ = L/40 on a domain of length L = 10 with mass M = 15. As A
increases, the density at the boundary decreases and is eventually driven to u = 0.
For sufficiently large A, W drives the minimizer to zero over an interval, creating
vacancies near the barriers. Panel (b) is similar, but varies σ with fixed A = 10,
which is sufficiently large to ensure u = 0 at the boundary. As the barrier width σ
decreases, the vacant interval shrinks to a point, and W pins the minimizer to u = 0
at the boundaries. For the smallest few values of σ, W is nonzero only at a the edges
of the computational domain; that is to say, W approaches infinity at the domain
endpoints and is zero within numerical tolerance elsewhere.

To restate: as we decrease σ, the narrow Gaussian, which we have numerically
under-resolved, approaches an obstacle potential, and the minimizer approaches one
which is pinned to u = 0 at the boundary. This limit suggests that we may replace
our smooth potential W with an approximate obstacle potential that is large on some
subset of the gridpoints and zero elsewhere. In this limit, continuity of W is lost. One
consequence is that the analysis in Section 4.3 demonstrating zero contact slope for
minimizers no longer holds. Indeed, it is apparent in Figure 5(b) that minimizers may
have nonzero slope where they are pinned by the potential at the domain boundary.

The strategy of adopting an obstacle potential is effective in two dimensions as
well. Figure 6 shows a minimizer of (29) with mass M = 9 on a domain with sides of
length L = 3. In the absence of an external potential, the minimizer has constant den-
sity u(x) = 1. Panel (a) takes the potential W (x) = 103 at computational gridpoints
that trace out the white heart-shaped curve, and W = 0 elsewhere. The potential
drives the minimizer to u = 0 along this curve, apparent as the dark blue region,
and the peak density is ‖u‖∞ ≈ 2.2. Panel (b) is similar, but takes W (x) = 103

on and exterior to the curve, creating a heart-shaped well. The potential confines
the minimizer to the well, drives it to zero along the boundary, and pushes the peak
density even higher, to ‖u‖∞ ≈ 4.7.

The next section focuses on cases where W is an obstacle potential, and examines
strategies for reducing the peak density by engineering W .

6. The effect on peak density of random versus periodic potentials. Our
biological motivation for this study is the dynamics of locust populations. Intuitively,
one might think that the distribution of many organisms in the wild is affected by
the distribution of resources on which they subsist, and indeed, this issue is part
of the rich field of biogeography. The way that resources shape the distribution of
locusts is intimately tied to locusts’ phase polyphenism. Phase polyphenism refers
to individuals of the same genotype manifesting different phenotypes [1, 60]. For
locusts, a pivotal phenotypic difference is the insect’s social behavior, or lack thereof.
A locust may exist in a solitarious phase in which it seeks isolation or a gregarious
phase in which it seeks other locusts. Locusts in the gregarious phase may form large,
migratory swarms that decimate crops. Therefore, dense social aggregations on the
ground are of interest as they are precursors to dangerous flying groups.

Previous work [66] identifies a population density threshold above which a collec-
tive transition to a dangerous, gregarious group takes place. Thus, one way to prevent
airborne swarms might be to suppress the density of locusts on the ground, so that
the group never reaches the critical threshold. Because social locusts display taxis not
only to each other, but to food, one can ask whether there exist external potentials
W , modeling food sources, which serve to minimize the peak density ‖u‖∞ of the
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Fig. 5. Minimizers of the degenerate Cahn-Hilliard equation (29) with Gaussian potential
barriers at the domain edges, as described by W (x) in (92). Domain length L = 10 with N = 160
computational grid points. Total mass is M = 15. (a) Fixed Gaussian width σ = L/40 for potential
volume A varying between 1 and 10. As the amplitude increases, u(0) and u(L) are driven to zero
and for sufficiently large A there is a vacant segment near the potential barrier. (b) Fixed Gaussian
amplitude A = 10 for width σ varying logarithmically between 0.0025 and 0.25. Here, A is sufficiently
large to drive u to zero near the boundary. As σ decreases, the vacant segment shrinks. The smallest
few values of σ to yield effectively nonzero W only at a the edges of the computational domain; that
is to say, W is large at the domain endpoints and zero within numerical tolerance elsewhere. This
choice pins the minimizer to be zero just at the endpoints, where a finite contact slope is observed.

population. We investigate this problem within the framework of (29). The locust
model in [66] includes additional effects – crucially, the phase change from solitarious
to gregarious locusts – but an understanding of the interaction between locusts and
food sources even in the absence of phase change is an appropriate starting point for
investigation.

Figure 7 reveals some of the intricacies of the problem. Consider a one dimen-
sional domain and obstacle potentials W (x) describing a sequence of square wells with
dividers between them, intended to model cropland divided into plots. Each panel
shows a minimizer of (29). At low and moderate masses M (top and middle rows),
applying a large number of square wells in W (x) to the fixed domain reduces the
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Fig. 6. Minimizers of the degenerate Cahn-Hilliard equation (29) for two obstacle potentials
W (x). The domain has sides of length L = 3 with N = 160 computational grid points along each
axis. Total mass is M = 9. (a) W (x) = 103 on the heart-shaped curve, and W = 0 elsewhere. The
potential pins the minimizers to u = 0 along this curve. (b) Similar to (a), but the potential is now
nonzero on and exterior to the curve, creating a heart-shaped well. In the absence of a potential,
the minimizer is a constant, u(x) = 1. In (a), W drives the peak density higher, to ‖u‖∞ ≈ 2.2. In
(b), W drives the peak density even higher, to ‖u‖∞ ≈ 4.7.

peak density ‖u‖∞, whereas at high masses (bottom row) it has the opposite effect.
Furthermore, at low and moderate densities, social aggregation can cause the mass
to clump in a subset of the wells, as seen in panels (b) and (e), which may serve to
either reduce or increase peak density.

In summary, the goal of this section is to choose external potentials W to min-
imize the peak density ‖u‖∞ using the Cahn-Hilliard model (29) as a testbed. For
tractability, we restrict attention to the class of obstacle potentials. The next three
subsections focus on a one dimensional domain with periodic W . In the the final sub-
section, we compare results for periodic potentials with those for random potentials
in both one and two dimensions. Random potentials tend to increase peak density
‖u‖∞ while periodic potentials can decrease it.

6.1. Energy minimizers in a single square well. For the Cahn-Hilliard
model (29), when ‖ supp(u)‖ for a given mass on an infinite domain is less than
the well width `, the minimizer is identical to that found in Section 4. However,
when the support is larger, the minimizer feels the boundaries of the square well. For
sufficiently large W at the edge of the well (that is, sufficient contrast between desert
and planted regions), u will be driven to zero.

From (47) and (54), minimizers satisfy

δE

δu
=

1

2
u2 − u− uxx = λ, (93)

subject to the mass constraint and the added restriction that u = 0 at the edges of
the well because of the external potential. An implicit solution for u as a function of
λ, mass M , and well size ` could be found in terms of elliptic integrals. However it
is simpler to consider small and large mass limits, as in Section 4, and augment our
calculations with numerical computations. First, we calculate the energy E of the
minimizing solution for several cases depending on M and `.
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Fig. 7. Minimizers of the Cahn-Hilliard model (29) on a domain of length L = 12π for varying
mass M and varying numbers of square wells in the external potential W (x). (a-c) M = π. (d-f)
M = 4π. (g-i) M = 16π. In the first column, there is one square well, an arrangement we use in
analogy to an isolated plot of planted land. In the second column, there are eight square wells, and
in the third column there are 24. At low and intermediate M (top and middle rows), applying a
large number of square wells in W (x) to the fixed domain reduces the peak density ‖u‖∞, as seen
in (c) and (f). In contrast, at large M (bottom row), increasing the number of square wells applied
via W (x) increases ‖u‖∞. For the numerical computations we use N = 744 grid points.

Case IA: Small M , ` < 2π. In Section 4, we showed that for an infinite domain,
the small M solutions have support of size 2π. We expect that for our present case,
the solution will occupy the entire domain. To examine the small mass limit, linearize
(93) to obtain the boundary value problem

− u− uxx = λ, u(0) = u(`) = 0, (94)

in addition to the mass constraint. The solution is

u(x) = M
cos(x− `/2)− cos(`/2)

2 sin(`/2)− ` cos(`/2)
. (95)

Direct computation via substitution into (70) yields the energy for this solution,

E =
M2

2

cos(`/2)

2 sin(`/2)− ` cos(`/2)
+O(M4). (96)

Crucially, the energy changes from positive to negative as ` increases through π.
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Case IB: Small M , ` > 2π. The results are identical to the infinite interval result
(so long as the support of the solution is less than `). Substituting (87) into (70), we
find the energy

E = −M
2

4π
+O(M4). (97)

Case II: Large M . Numerical simulation shows the density profile to be constant
in the potential well except for a small boundary layer near the sides of the well of
thickness O(

√
`/M). Exploiting this fact, we have

u(x) = M/`, (98)

and thus the energy is

E =
M3

6`2
+O

(
M5/2

`5/2

)
. (99)

6.2. Energy per unit mass in a single well. Momentarily, we will make
predictions about energy minimizers in multiple wells. To minimize the total energy
we will show that a system with multiple wells distributes mass among those wells to
minimize the energy per unit mass. Thus, as another preliminary step, we use the
results of the previous subsection to calculate the energy per unit mass in a single
well. Define the energy per unit mass,

E(M) = E(M)/M. (100)

From the previous subsection, we can determine the behavior of E(M) for the limiting
cases of small and large M . We will see that E(M) may have a minimum, which will
be a crucial characteristic when we consider the case of multiple wells. We refer to
the value of M that minimizes E(M) as M∗.

Case I: ` < π. A sample computation of E(M) is shown in Figure 8(a). It is
monotonically increasing. This result is consistent with the small mass result (96),
from which it follows that

E(M) =
M

2

cos(`/2)

2 sin(`/2)− ` cos(`/2)
, (101)

which is linearly increasing with M . Also, from the large mass result (99),

E(M) =
M2

6`2
, (102)

which is again increasing. We conclude that M∗ = 0, that is, having the minimum
possible mass in the well minimizes E(M).

Case II: π < ` < 2π. A sample calculation of E(M) is shown in Figure 8(d).
Relations (101) and (102) still hold, but crucially, the coefficient in the small mass
limit is negative rather than positive, as it was in Case I. Thus, we expect M∗ to
occur between the decreasing behavior at small mass and the increasing behavior at
large mass, as evidenced in the figure.

Case III: ` > 2π (but finite). Recall that for an infinite domain and in the limit of
small mass, the minimizer is given by (87) and the support is 2π. It is not surprising,
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Fig. 8. Properties of minimizers of the Cahn-Hilliard model (29) with a single square well of
width ` used for the external potential W (x). Columns are the energy per unit mass E(M), the peak
density ‖u‖∞, and the size of the support ‖ supp(u)‖, all as a function of mass M . (a-c) Case I,
` = π/2. Here, E(M) and ‖u‖∞ increases monotonically and supp(u) fills the entire domain. (d-f)
Case II, ` = 3π/2. Here, E(M) reaches a minimum at M = M∗, ‖u‖∞ increases monotonically
and supp(u) fills the entire domain. (g-i) Case III, ` = 5π/2. Here, E(M) reaches a minimum at
M = M∗, ‖u‖∞ increase monotonically and supp(u) widens and eventually fills the entire domain.
(j-l) Case IV, ` chosen to be effectively infinite, much larger than supp(u). Here, E(M) decreases
monotonically to −3/8 and ‖u‖∞ increases monotonically to 3/2. Additionally, supp(u) widens
without bound and, asymptotically, grows linearly.

therefore, that the same small mass result holds for intervals wider than 2π. Plugging
the minimizer into the energy and dividing by M yields

E(M) = −M
4π
, (103)
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which is decreasing. As the mass increases, the support widens as well, and eventually
fills the domain, as shown in Figure 8(i). For sufficiently large mass, the density is
nearly constant with u(x) ≈ M/` (except at the boundaries) and the approximation
(102) still holds. As in Case II above, E(M) is decreasing at small mass, increasing
at large mass and reaches a minimum at M∗ between these two regimes.

Case IV: ` large (effectively infinite). The small mass approximation (103) still
holds. As M increases, the minimizer follows the branch of solutions found for the infi-
nite interval. Moreover, by the energy argument in Section 4, the solution approaches
a single rectangle of height u = 3/2, having, by direct calculation,

E(M) = −3

8
. (104)

Thus, E(M) decreases monotonically but approaches this constant, and so M∗ is
effectively infinite. It will be energetically favorable for the mass to form a clump of
density u = 3/2 inside a single well as was seen previously.

6.3. Energy minimizers in multiple wells. We now take the external poten-
tial W to consist of a periodic sequence of square wells of width `. The key question
is whether the mass will distribute itself equally amongst the wells or whether it is
energetically preferred to concentrate in a subset of the wells. We use the results from
the previous subsections to answer this question.

More concretely, suppose that there are n equal wells in the domain and that for
each well, E(m) is the energy associated with a minimizer of mass m located in that
well. The total energy for a distribution of masses mi > 0 is

E(M) =

n∑
i=1

E(mi), (105)

where

n∑
i=1

mi = M, (106)

because total mass is fixed. To proceed, consider an ansatz where the mass is equally
distributed between k of the n wells. In this case,

E(M) = kE(M/k) =
M

µ
E(µ) = ME(µ), (107)

where µ is the mass contained in each occupied well. From this equation, we deduce
that a necessary condition to minimize E(M) is to minimize the energy per unit mass
E(µ) over admitted values of µ.

For the sake of argument, suppose one can choose µ = M∗. In this case, E(M) is
globally minimized. In practice, the values of µ are quantized since µ = M/k where
k is a positive integer less than or equal to n. For large enough n, the system appears
to choose µ that approximates M∗ well.

Now apply these ideas to the numerical results in Figure 7. For panels (a,d,g) in
the first column, there is one square well, that is, ` = L = 12π. For panels (b,e,h) in
the second column, there are eight square wells, that is ` = L/8 = 3π/2, for which we
have estimated M∗ ≈ 2.97 from the data in Figure 8(d). In panel (b), as M ≈ M∗,
the mass fills a single well. In panel (e), as 4M∗ < M < 5M∗, the mass fills five
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of the wells. In panel (h), as M > 8M∗, the mass equipartitions among all eight
wells. Finally, for panels (c,f,i) in the third column, there are 24 square wells, that is,
` = L/24 = π/2 for which M∗ = 0. Therefore, for all values of M , mass equipartitions
among all wells.

6.4. Comparing random and periodic potentials. We now demonstrate
that a periodic pattern of resources in the environment can reduce peak density below
what might be seen with a random distribution of resources. This effect is evident
in Figure 9, which compares these two cases in one and two dimensions. For all four
panels, the average density is u = 1/2, which is below the peak density of 3/2 seen in
minimizers in the absence of an external potential (see Section 4). Additionally, we fix
φ, the volume fraction of the computational domain on which the obstacle potential
W is effectively infinite (here, 104) and we take W = 0 elsewhere. These choices of
W model, respectively, regions barren and lush with vegetation. In Figure 9, we set
φ ≈ 0.08.

First, consider the one dimensional case. In panel (a), mass equipartitions among
all 40 available potential wells, and ‖u‖∞ ≈ 0.76. For the randomly distributed
potential used in (b), some wells are left vacant and the peak density increases to
‖u‖∞ ≈ 1.95. Now, for two dimensions, panel (c) demonstrates that mass equiparti-
tions among all 25 potential wells in the five-by-five grid, and ‖u‖∞ ≈ 1.2. However,
for the randomly distributed potential used in (d), there exist hot spots with peak
densities as high as ‖u‖∞ ≈ 1.7.

In short, periodic potentials can suppress the peak density below 3/2, while ran-
dom potentials can concentrate density at values greater than 3/2. Figure 10 provides
a systematic investigation for varying volume fraction φ in one and two dimensions.
In both cases, at low φ, ‖u‖∞ ≈ 3/2 (dotted line) for both random (shown as squares)
and periodic (shown as circles) potentials. As φ increases, the periodic potential sup-
presses peak density below 3/2 whereas the random potential increases it above. This
result suggests the viability of carefully engineering resource layout as a strategy for
reducing a population’s peak density.

7. Conclusion. Understanding how populations respond to social forces and
environmental cues such as resource distribution is essential for modeling biological
groups. For example, for desert locusts, spatially varying resource distributions can
concentrate populations, which in the wild can lead to collective gregarization and
dangerous outbreaks [36]. We have laid out a framework for studying these problems
by exploiting energy minimization of the governing models.

More specifically, we began with aggregation model describing nonlocal social
attraction, local, nonlinear repulsion, and an external potential modeling the environ-
ment. This model possesses an energy that is minimized by the dynamics. However,
the model poses (at least) three challenges. First, time-dependent simulations are
costly, and may converge slowly to attractors. Second, attractors typically have com-
pact support. Standard simulation methods may produce oscillations emanating from
contact points which typically violates nonnegativity of the solution. Third, the non-
locality couples all spatial locations, rendering numerical computations expensive,
especially in two or more dimensions.

To address the first two challenges, we exploit the energy minimizing dynamics
by focusing on the analysis and numerical computation of minimizers. This avoids
costly computations of dynamics, and additionally, minimization algorithms allow us
to enforce nonnegativity of the solution as a simple constraint in the optimization
procedure. To address the third challenge, we perform a long-wave approximation of
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Fig. 9. Example minimizers of (29) for random and periodic obstacle potentials W (x). For
these potentials, we fix φ, the volume fraction of the computational domain in which the environ-
mental potential W is effectively infinite (here, 104). Elsewhere, W = 0. These choices of W model,
respectively, regions barren and lush with vegetation. (a,b) Minimizers in one dimension for M = 50
on a domain of length L = 100 with 480 computational gridpoints and φ = 1/12 ≈ 0.083. For the
periodic potential used in (a), mass equipartitions into all 40 potential wells and ‖u‖∞ ≈ 0.76. For
the randomly distributed potential used in (b), some wells are left vacant and the peak density in-
creases to ‖u‖∞ ≈ 1.95. (c,d) Minimizers in two dimensions for M = 648 on a domain with sides of
length L = 36 with N = 120 computational grid points along each axis and φ = 47/576 ≈ 0.082. For
the periodic potential used in (c), mass equipartitions into all 25 potential wells in the five-by-five
grid, and ‖u‖∞ ≈ 1.2. For the randomly distributed potential used in (d), there exist hot spots with
peak densities as high as ‖u‖∞ ≈ 1.7.

our model to obtain a fourth-order degenerate Cahn-Hilliard equation which is local
in space while preserving the energy minimizing character of the original model. In
summary, we have developed an approach to studying aggregations that replaces sim-
ulating a nonlocal equation with minimizing a local energy subject to a nonnegativity
constraint.

In the absence of an external (that is, environmental) potential, minimizers of the
nonlocal and Cahn-Hilliard equations agree well at large masses and away from the
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Fig. 10. Peak density ‖u‖∞ of minimizers of the Cahn-Hilliard equation (29) for two classes
of obstacle potentials W (x). We vary φ, the volume fraction of the computational domain in which
the environmental potential W is effectively infinite (here, 104). Elsewhere, W = 0. These choices of
W model, respectively, regions barren and lush with vegetation. Open circles correspond to choosing
for W a periodic pattern of square wells, representing engineered cropland with barriers between crop
beds. Squares correspond to choosing for W a uniformly random distributed pattern, producing an
irregular, clumpy vegetation landscape. Error bars represent maximum and minimum values over
ten realizations of W for the random case. Dotted lines represent ‖u‖∞ = 3/2, the energetically
preferred peak density for large mass solutions in a large domain. (a) Minimizers in one dimension,
with domain length L = 100, population mass M = 50, simulated with N = 480 gridpoints. (b)
Minimizers in two dimensions, with domain length L = 36, population mass M = 648, and N = 120
gridpoints along each axis. For both (a) and (b), the average population density is 1/2. In both
panels, a randomly generated W tends to increase peak density ‖u‖∞ above 3/2 while periodic
square wells tend to decrease it below 3/2.

contact points. In the limit of large domains and modest densities, these minimizers
approach a compactly supported clump of population with peak density 3/2 and steep
edges.

An external potential drives mass to accumulate near potential minima, often
creating collections of compactly supported clumps. Many environmental landscapes
can be partitioned into regions that are either inviting or inhospitable to biological
organisms. This characterization arises naturally in numerical computations for suffi-
ciently steep potential wells. Thus, we model these landscapes via obstacle potentials
that are effectively infinite (inhospitable) on some subset of the domain and zero
(inviting) elsewhere.

In this obstacle potential testbed, we ask how resource distribution effects peak
population density. In the absence of an external potential and at modest average
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population densities, aggregations form with peak density 3/2, as mentioned above.
A spatially random obstacle potential modeling the natural environment drives peak
densities higher, even when the inhospitable portion of the domain is less than 10%
of the total. However, a periodic pattern of square wells modeling divided crop beds
can reduce the peak density below 3/2.

Anthropologists have chronicled the use of periodic planting patterns since an-
cient times, and typically attribute this strategy to better water management and
thus increased crop yield. We are intrigued, but admit that it is pure speculation,
to ask whether this strategy might confer any pest control advantages. Regardless,
the biological literature notes that for locusts, “fractal dimension” of resources in the
environment can drive large peak population densities [36]. While perhaps just a
caricature, our simple model suggests that carefully distributing resources can inhibit
populations from reaching their intrinsic peak density and plausibly could help con-
trol undesirable biological phenomena such as gregarious locust outbreaks that are
triggered by surpassing a density threshold.
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