
Claremont Colleges
Scholarship @ Claremont

All HMC Faculty Publications and Research HMC Faculty Scholarship

1-1-1989

Viscous Cross-waves: An Analytical Treatment
Andrew J. Bernoff
Harvey Mudd College

L. P. Kwok
University of Arizona

Seth Lichter
University of Arizona

This Article is brought to you for free and open access by the HMC Faculty Scholarship at Scholarship @ Claremont. It has been accepted for inclusion
in All HMC Faculty Publications and Research by an authorized administrator of Scholarship @ Claremont. For more information, please contact
scholarship@cuc.claremont.edu.

Recommended Citation
Viscous cross-waves: An analytical treatment. Andrew J. Bernoff, L. P. Kwok, and Seth Lichter, Phys. Fluids A 1, 678 (1989).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Claremont

https://core.ac.uk/display/70973973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarship.claremont.edu
http://scholarship.claremont.edu/hmc_fac_pub
http://scholarship.claremont.edu/hmc_faculty
mailto:scholarship@cuc.claremont.edu


Viscous cross-waves: An analytical treatment 
Andrew J. Bernoff 
Department of Mathematics, University of Arizona, Tucson, Arizona 85721 

L. P. Kwok and Seth Lichter 
Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721 

(Received 6 December 1988; accepted 20 December 1988) 

Viscous effects on the excitation of cross-waves in a semi-infinite box of finite depth and width 
are considered. A formalism using matched asymptotic expansions and an improved method of 
computing the solvability condition is used to derive the relative contributions of the free­
surface, sidewall, bottom, and wavemaker viscous boundary layers. This analysis yields an 
expression for the damping coefficient previously incorporated on heuristic grounds. In 
addition, three new contributions are found: a viscous detuning of the resonant frequency, a 
slow spatial variation in the coupling to the progressive wave, and a viscous correction to the 
wavemaker boundary condition. The wavemaker boundary condition breaks the symmetry of 
the linear neutral stability curve at leading order for many geometries of experimental interest. 

I. INTRODUCTION 

Cross-waves are a classical hydrodynamic example of 
parametric instability. Garrett! showed that cross-waves are 
excited within a narrow band of frequencies in a finite tank 
with a wavemaker at one end. Jones2 extended these ideas to 
an infinite tank; he showed that a nonlinear Schrodinger 
(NLS) equation governed the dynamics of inviscid cross­
waves. Because the boundary condition at the wavemaker 
introduced energy into the fluid and there was no dissipation 
mechanism in the inviscid theory, Jones' numerical model 
tended to show unbounded growth and instability. This 
problem can be ameliorated by the addition of viscous damp­
ing; this was done by Barnard and Pritchard3 for the linear 
theory and by Barnard et al.4 for the related problem of 
sloshing waves in an unbounded channel, which is also gov­
erned by a NLS equation. Subsequently, damping was incor­
porated into the NLS equation for cross-waves by Lichter 
and Chen5 and Miles and Becker.6 

All these treatments of damping were done in a qualita­
tive fashion; it was assumed that the damping was linear, and 
the coefficient was evaluated empirically. A formalism for 
treating the viscous damping resulting from an oscillating 
boundary layer (Stokes layer) near a solid boundary was 
developed by Ursell? using an energy dissipation method. 
Similar methods exist for predicting the decay of a progress­
ing wave.8 Mei and Liu9 computed the viscous damping of a 
surface wave confined by side walls using matched asymp­
totics, and showed the equivalence of this method to the 
energy dissipation method. They showed that the meniscus 
region, where the free surface meets the solid boundary, 
caused the same order of dissipation as the Stokes layers at 
the side walls. In addition, their work demonstrated that 
viscous effects not only damp but also detune the resonant 
frequency at leading order. 

The purpose of the present study is to use a matched 
asymptotics method similar to that ofMei and Liu9 to incor­
porate the leading-order viscous damping and detuning 
from the wavemaker, side walls, bottom, and free surface 
into the NLS equation for cross-waves. Jones' analysis2 is 

modified to consider a finite-depth tank so bottom effects 
can be considered. In addition, an improved formalism for 
obtaining the solvability condition at each order via a 
Green's identity is introduced. This method, like the energy 
dissipation method,1O reduces the calculation of viscous ef­
fects to a surface integral over the boundaries; the two meth­
ods are comparable in terms of length and ease of calcula­
tion. 

The viscous boundary layers are matched to an irrota­
tional core. This induces viscous corrections to the inviscid 
boundary conditions and, in turn, a linear viscous correction 
to the NLS equation. The free surface induces a damping 
that is inversely proportional to the Reynolds number (Re) 
based on cross-wave frequency and wavenumber. The 
damping and detuning from the solid boundaries at the side 
walls (including meniscus) and bottom are proportional to 
1IJRe and decrease inversely with width and exponentially 
with depth, respectively. A new contribution to the wave­
maker boundary condition is found; although no dissipation 
occurs on the wavemaker at this order, the meniscus layer 

modifies the boundary layer by an order of 11 JRe correc­
tion. This correction causes the neutral stability curve to be 
skewed, an effect that has been observed, but not explained, 
in many experimental studies. I 1-13 In addition, it is shown 
that the detuning resulting from the progressing wave is now 
dependent on the slow spatial coordinate; this effect, al­
though new, is presumably too small to be observed in the 
present experimental geometries. 

This present study is limited to viscous effects. In some 
physical situations other dissipative mechanisms, including 
surface contamination and capillary hysteresis, may be as 
important (see the review by Miles 10). The formalism pre­
sented here is capable of describing an essentially irrota­
tional core matched to narrow boundary layers. Nonviscous 
dissipation effects could presumably be incorporated into 
this formalism through a more-detailed treatment of the 
boundary layer structure. Moreover, the present work sug­
gests that the form of the NLS equation and corresponding 
wavemaker boundary condition will remain invariant, al­
though the value of the damping constants may change. We 
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believe that a detailed comparison with experiment will have 
to await these modifications. 

The basic formulation of the problem is presented in the 
next section. In Sec. III, the structure of the boundary layers 
at the free surface, solid boundaries, and meniscus region are 
derived and the corresponding correction to the inviscid 
boundary conditions are determined. In Sec. IV, the solution 
corresponding to the inhomogeneous response to the wave­
maker forcing is derived, 14 including the leading-order cor­
rection resulting from viscosity. A perturbation formalism 
for the modulation theory is outlined and used to derive the 
leading-order solution; a Green's identity for the solvability 
condition at each order is derived. The theory is carried to 
third order in Sec. V, yielding the modified NLS equation 
and wavemaker boundary condition incorporating all the 
leading-order viscous effects. This theory is discussed in Sec. 
VI and the modified neutral stability curves are derived. 
Conclusions are presented in Sec. VII, and two appendices 
containing auxiliary calculations are presented. 

II. FORMULATION 

The excitation of cross-waves resulting from a planar 
wavemaker oscillating with frequency 20' in a semi-infinite 
channel of width Wand finite depth is considered. The cross­
wavewavenumberisk = Nrr/W, whereNis the mode num­
ber. The displacement of the wavemaker is given by 
(a cos 20't). 

In order to examine the boundary layer on the wave­
maker, a coordinate system that is fixed with the moving 
wavemaker is used. In this coordinate system, the force re­
sulting from the wavemaker appears as a time-dependent 
body force. In this frame, the wavemaker can be considered 
as a fixed solid wall and the corresponding boundary layer 
can be treated using the analysis in Sec. III. Although for 
simplicity a planar wavemaker is considered here, the lead­
ing-order viscous dissipation is independent of wavemaker 
geometry; consequently, the results are immediately appli­
cable to wavemakers whose radius of curvature is small rela­
tive to their boundary layer thickness. 

The Navier-Stokes equations and boundary conditions 
are rendered dimensionless by the use of the characteristic 
length I/k and time I/O'. The resulting equations are 

au 
-'=0, 
aXi 

aU i aU i 2" 2" 
-+u--2€(e"+e- ")x l at J aXj 

a a2u 1 + (€8) 2 __ '_" • 

aXi aXj aXj 

The boundary conditions are 

at x = 0, 

U = v = w = ° , at y = 0, Nrr, 
at Z= - d. 

On the free surface, z = "I, 

w = "I, + u7Jx + v7Jy , 

- p + (gk /~)7J + 2(€8)2wz = ° , 
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(1) 

(2) 

(3a) 
(3b) 
(3c) 

(4a) 

(4b) 

wx+Uz=o, (4c) 

wy+vz=o. (4d) 

Following Mei,15 the viscous contributions to the free-sur­
face boundary conditions have been linearized, as only their 
leading-order effects will be considered. Because of viscous 
effects, all disturbances decay far from the wavemaker, 

U,v,w-+o, as X-+ 00 • (5) 

This replaces the radiation condition commonly used for the 
in viscid problem. 

The problem is now specified with respect to three di­
mensionless parameters. The nondimensional forcing is giv­
en by 

€= ak~l . 

The ratio of viscous effects to forcing is given by 

8 = I/€JRe, 

where the Reynolds number is defined as 

Re = 0'/vk 2 

and v is the kinematic viscosity. In addition, finite-depth 
effects are parametrized by d. 

In the inviscid limit, the fluid is expected to approach an 
inviscid irrotational core with viscous effects confined to 
thin boundary layers. The appropriate equations in this limit 
are expressed in terms of the velocity potential, 

U=VifJ, 

for which incompressibility requires 

V2ifJ=0. 

(6) 

(7) 

The kinematic and normal stress boundary conditions 
can be combined and expanded 15 as 

ifJlt + ~ ifJz = 4€i(e2il 
- e- 2il )x + 2€(e2il + e- 2il

) 

'(ifJx +ifJxz7J) -(ifJlt + ~ifJz)z "I 

- (VifJ):- ~ (ifJlt + ~ ifJzt "12 

- (VifJ>";7J- ~ VifJ·V(VifJ)2, at z=O, 

(8) 

where we have kept terms to third order in ifJ and "I. The first 
two terms on the right-hand side are contributions to the 
potential that arise because of the nonstationary coordinate 
system. 

At the solid walls, no flux through the boundaries re-
quires 

ifJz =0, at Z= - d, (9a) 

ifJy =0, at y=O, Nrr, (9b) 

and 

ifJx =0, at x = 0. (9c) 

In the next section, the leading-order viscous correc­
tions to (8) and (9), as a result of the boundary layers on the 
solid walls and the free surface, are determined. 
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III. BOUNDARY LAYER ANALYSIS 

In this section, the leading-order dissipation of an oscil­
latory velocity potential in the neighborhood of the solid and 
free-surface boundaries is computed using matched asymp­
totic expansions. Because the disturbance U i is small, nonlin­
ear interactions do not enter the expansion at leading order. 
Consequently, a linear analysis in the boundary layer suf­
fices to derive the dominant dissipative contributions. 

A. Free surface 

Near the free surface, let n = z/(dj) and 

U = Uei<", v = Vei<" , w = (W /ED)ei<" , p = pei<". 

(10) 

Under this scaling, the continuity equation (1) becomes 

Wn = - (ED)2(Ux + Vy )' (11) 

The momentum equation (2) yields 

iOJU - Unn = - Px + (ED)2( Uxx + Uyy ) , (12a) 

iOJV- Vnn = -Py + (ED)2(Vxx + Vyy ) , (12b) 

iOJ W - Wnn = - Pn + (ED)2( Wxx + Wyy ) • (12c) 

For the free surface, it is sufficient to consider the dissi-
pation of a two-dimensional disturbance. It is therefore as­
sumed that V=O and no variation occurs in the y direction. 

In the interior of fluid, VV) = 0, and near z = 0, </J can be 
expanded: 

</J= [A(x) +B(x)z-Axx (Z2/2) 

- BxJz3/6) + ... ]ei
"' , (13) 

whereA(x) = </J(x,O) andB(x) = </Jz(x,Q). 
In the boundary layer, U, W, and Pare now expanded in 

powers of (ED)2: 

(U,W,P) = (l(o,Wo,Po) + (ED)2(UI ,WI ,PI ) + .... (14) 

Substituting ( 14) into ( 11) and ( 12), retaining the leading­
order terms, and solving, yields 

Po = a(x) + b(x)n , 

Wo = - b(x)/iOJ , 

(15a) 

(15b) 

Uo = - aJiOJ - bxn/iOJ + c(x)ean , (15c) 

where a, b, and c are functions of x to be determined through 
matching and a =.JJW = (1 + i)(OJ/2) 1/2. Collecting terms 
of order (ED) 2 from (11) and (12) yields an inhomogeneous 
problem for (UI , WI ,PI ); this can be solved to yield 

(16a) 

WI = axxn + bxx n
2 

_ Cx ean 
iOJ iOJ 2 a ' 

(16b) 

2 b 3 

U 
axxxn xxxn cxxn 1= ___ + ___ - __ ean . 

2iOJ 6iUJ 2a 
( 16c) 

Now consider (u,w) in the matching region where 
1» - z» ED. Equations (15) and (16) yield 

U = {~[(a - a Z2) ED + (b z + bxxx
z3)] iUJ x xxx 2 x 6 

(17a) 
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and 

w= {- i~[ -EDaxxz+(b- bx;r)] 

+ O(z3,eZ
/

EiJ
) }ei

,"' • (17b) 

Remembering that U = V</J and matching to (10) yields the 
identification 

a = - iOJ</J(x,Q) (18a) 

and 

b = - (ED)iOJ</Jz (x,O) . (18b) 

The free-surface boundary conditions are now applied 
to determine the relationship between a, b, and c. The 
boundary conditions are linearized and applied at n = 0 to 
reveal the leading-order viscous contributions. The tangen­
tial stress condition (4c) yields 

Un + Wx =0, (19) 

which implies from (15) that 

c = 2bxa/iOJ + 0 [(ED)2] . (20) 

The normal stress condition (4b) and the kinematic 
condition (4a) can now be linearized, rescaled, and com­
bined to yield 

(ED)-I(gk/cr)W-iOJP= -2Wn . (21) 

Substituting (15) and (16) into (19) and applying condi­
tions (18) and (20) yields 

(gk /cr)</Jz (x,O) - OJ2</J(x,Q) 

= 4(ED)2iOJ</Jxx (x,O) + 0 [(ED)3] , at z = 0, (22) 

where the right-hand side of (22) is the leading-order vis­
cous correction to the inviscid free-surface boundary condi­
tion. 

B. Solid boundary 

We now consider the boundary layer above a solid 
boundary at z = O. The disturbance is assumed to be oscilla­
tory with frequency OJ. The velocity potential is expanded 
near z = 0 as 

</J= [</J(x,y,O) + </Jz(x,y,O)z + ... ]e i
"'. (23) 

The velocity is again scaled as in (10). The problem is 
now specified by the continuity and momentum equations 
(11) and (12), together with boundary conditions 
U = V = W = 0 at n = O. The leading-order solution is 
found: 

P = A (x, y) + 0 [(ED)2] , (24a) 

U= [(i/UJ)Ax ](1-e- an ) +O[(ED)2] , (24b) 

V= [(i/OJ)Ay ](1-e- an ) +O[(ED)2] , (24c) 

W= [i(ED)2/OJ](Axx +Ayy )[(1/a)(1-e- an ) -n] 

+ 0 [(ED)4] . (24d) 

Matching (24a)-(24c) with Eq. (23) yields 
A = - iUJ</J(x, y,O). Matching (24d) with (23) and recog­
nizing that </Jzz = - (</Jxx + </Jyy ) yields 
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atPz(x,y,O) + (€8)tPzz(x,y,0) =O[(€8)2,e- zl<c5] (25) 

as the boundary condition for the solid boundary. 
This analysis can also be applied to the boundary layer 

at the side walls and wavemaker if a I az is interpreted as the 
derivative normal to the boundary. Equations (22) and (25) 
can now be used to incorporate the leading-order viscous 
effects into the inviscid problem, as specified by (7)-(9). 

C. Meniscus region 

Following Mei and Liu,9 the contribution to viscous 
damping from the meniscus region, where the free surface 
joins a vertical solid boundary, is now computed. In Sec. 
III B, it was seen that within a distance O(€8) of the solid 
boundary, there is an additional contribution to the velocity 
field as a result of the vorticity generated at the boundary. 
Although the velocity in this region is O( 1), it is confined to 
a thin layer and contributes only a small correction to the 
free-surface condition, which is now computed. Without 
loss of generality, the region near where the free surface 
(z = 0) intersects the side wall (y = 0) is considered. The 
analysis on the opposing side wall and at the wavemaker is 
similar. 

From Eq. (24), the additional contribution to the veloc­
ity normal to the surface near the wall can be computed, 

W = W M + tPz , (26) 

where WM , the contribution from the meniscus, is given by 

(27) 

and; is the scaled coordinate normal to the solid boundary, 

; = ayl€8. (28) 

IfwM is now incorporated into the analysis of Sec. III A, an 
additional contribution to the free-surface boundary condi­
tion (22) is generated by the W term in Eq. (21), 

(gk Icr)tPz (x,O) - oitP(x,o) 

= - (gk Icr)wM(x,O) , at z = O. (29) 

Although W M = O( 1) in the boundary layer, it will contrib­
ute an O(€8) viscous correction to the analysis because it is 
confined to the thin region [thickness = 0 ( €8) ] . 

Equations (22), (25), and (29) now specify how lead­
ing-order viscous effects from the free surface, solid bound­
aries, and meniscus regions, respectively, modify the bound­
ary conditions for the inviscid problem. 

IV. DERIVATION OF THE VISCOUS MODULATION 
THEORY 

In this section, the viscous boundary layer terms com­
puted above are incorporated into the modulation theory. 

A.Scaling 

Following the work of Jones,2 variables tP, 1/, and 0' are 
now expanded in powers of € such that 

681 

tP = €tPl + CtP2 + ~tP3 + "', 
1/ = €1/1 + C1/2 + "', 
0'= 0'0(1 + CO'2 + ... ) , 
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(30) 

where 0'0 = [gk tanh(d)] 1/2 is the cutoff frequency. At the 
same time, multiple scales 

X=€X, r=€t, and r'=ct (31) 

are also introduced. 
Equation (7) now reads 

V2tP = a
2

tP + 2€ a
2
tP + C a

2
tP + a

2
tP + a

2
tP 

ax2 ax ax ax2 ay2 ar 

= l1tP +2€ a
2

tP +c a2tP, (32) 
ax ax aX2 

where l1tP is the Laplacian in the (x, y,z) coordinates. 
We now proceed to solve Eq. (32) in successive powers 

of €. Note that tP is real, but it is convenient to separate the 
solution by frequency dependencies, eilOI

• Consequently, at 
each order, tP will be expressed as a sum of frequency compo­
nents together with their complex conjugates (denoted as 
c.c.). 

B. First-order solution 

The leading-order solution consists of an inhomogen­
eous response at the wavemaker frequency 14 (tPie2il + c.c.), 
together with a homogeneous cross-wave solution 
(tP h eil + c.c.). I As the problem is now being considered in a 
moving frame, an additional contribution to the velocity po­
tential ( - ixe2il + c.c.) is induced, 

tPl = - ixe2il + tPie
2il + tPh eil + c.c. 

The equations specifying tPi are 

l1tPi = 0, 

with the free-surface boundary condition 

(33) 

(34) 

- 4tPi + HtPi, = (€8)28itPixx + I HtPze - ~j, at z = 0, 

(35a) 

where H = gk IlTo = l/tanh(d), and the sum is taken over 
the meniscus layer for the two side walls with ;j being the 
scaled outward normal (cf. Sec. III C). The remaining 
boundary conditions are 

tPjx = i, at x = 0, (35b) 

tPjz = €8[ (1 - i)/2]tPi
u

' at z = - d, (35c) 

tPjy = 0, at y = O,NIT, (35d) 

together with 

tPj ..... O, as x ..... 00 • (35e) 

In Eqs. (35a)-(35c), respectively, the viscous correc­
tions that follow from (22), (25), and (29) have been in­
cluded. Although these corrections enter formally at a high­
er order, including them here avoids the introduction of a 
singular perturbation. 

A uniform leading-order solution for tPi is given by 

J. _ B rx cosh[m(z + d)] - jmx 
'f'j - e e 

cosh (md) 

+ IiBje-mJxCos[mj(z+d)] +O(€), (36) 
j cos(mjd) 

where r is given by 
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1 + 2md Isinh 2md 

The solution for <Pi (36) consists of a damped progressing 
wave and a sum of parasitic modes localized on the wave­
maker. Because the dissipation on the free surface and bot­
tom was included at this order, the solution (36) modifies 
that of Havelock to include the slow decay (erY ) of the pro­
gressing wave. The Band Bj's are determined from eigen­
function expansions and are given in Appendix A, together 
with eigenvalues m and m/s. 

The forcing frequency 0"0 has been chosen so that the 
leading-order cross-wave equations admit a homogeneous 
cross-wave solution, <Pheit + c.c., which satisfies 

t:..<Ph = II 
- <Ph + H<Phz = 12 , at z = 0 , 

<Phz = 13 , at z = - d , 

<Phx = 14 , at x = 0 , 

<Ph = Is, at y = 0, 
y 

together with 

<Ph .... O' as x .... 00 , 

and with ~ = o. This admits a solution 

<Ph = A (x,T,r') ¢(z,y) , 

where 

¢ = [cosh(z + d)/cosh d ]cosy 

(38) 

(39a) 

(39b) 

(39c) 

(39d) 

(3ge) 

(39f) 

(40) 

(41 ) 

and A is a complex modulation amplitude, which is allowed 
to vary on the slow time and space scales. Note that to satisfy 
(39), it will be assumed that 

A .... O as X .... 00 • (42) 

At the nth order of perturbation theory, it is necessary to 
solve for <Pn by inverting the same linear problem that speci­
fied <PI. The solution for <Pn is specified by inhomogeneous 
functions of <P I through <P n _ I . Because the eit portion of this 
problem has a homogeneous solution, a solvability condition 
is needed to allow the inversion of the linear operator. This 
solvability condition is now derived. 

Consider the linear problem (38) and (39) with <Ph re­
placed by an unknown function '" and II through 16 repre­
senting inhomogeneities in the equation and boundary con­
ditions. The problem is self-adjoint and, as such, the 
Fredholm alternative implies that the solvability condition 
on the ¢ subspace is given by considering 

{L dx {N7T dy I dz t:..¢ '" = 0 , 
Jo Jo J - d 

(43) 

where L is taken sufficiently large to be in the far field (far 
from the wavemaker) where all the disturbances are expon­
entially small. By applying the Green's theorem to (43) and 
using (39), the unknown", can be eliminated to yield 
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(37) 

This solvability condition can now be applied directly to 
the eit component solution at each order. 

c. Second-order solution 

At second order, a number of inhomogeneities appear in 
the boundary conditions that lead to a nontrivial solvability 
condition. In the interior of the fluid, 

(45) 

On the free surface, the quadratic interactions of <PI in (8) 
must be retained. In addition, there is a contribution from 
the potential term, the r time scale, and from the meniscus 
region of the side walls and wavemaker (cf. Sec. III C) 

<P2" + H<P2z = - 7J1 (<PI", + H<PI,) - 2(<Pl x <Pl xo 

+ <Ply<Ply, + <PI,<PI,,) 

+ 2 (e2it + e - 2it)<Pl x - 2<P1" 

+ L H <Pz e - ~j, at z = 0 . 
j € 

(46) 

The sum in the last term is taken over the three meniscus 
regions along the wavemaker and along the two side walls, 
and t j is the scaled coordinate perpendicular to the solid 
boundary for each of these regions (cf. Sec. III C). 

The viscous contributions on the solid boundaries can 
be computed using (25). On the bottom, 

<P2 = - 8[ (1 - i)/v2]<Ph eit + c.c., at z = - d. z _ 

(47) 

Similarly, on the side walls, 

<P2 = - t:5[ (1 - i)/v2]<Ph eit + c.c., at y = 0 , (48a) 
Y n 

<P2 =t:5[(1-i)/v2]<Ph eit+c.c., aty=N1T. (48b) 
Y n 

On the wavemaker, note that <Phxx = a(c) because the 
cross-wave solution is only a function of the slow length scale 
X. Consequently, 

<P2 = - <PI , at x = 0 . 
x r 

(49) 

To obtain the solvability condition at order c, the eit 

component of (45 )-( 49) must be considered; this compo­
nent of <P2 will be labeled <P2I> i.e., 

<P2 = <P2l eit + c.c. + nonresonant terms. (50) 

From (45), 
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(51 ) 

From (46), the only terms that have the correct time de­
pendence are quadratic interactions of terms in rPh propor­
tional to A *e - i" with terms in rPi proportional to e2i" the r 
derivative of rPh' and meniscus contributions, 

- rP21 + HrP21z 
= iA * cosy[ (2 + 6H-2)rPi - rPizz ] - 2iAT cosy 

+ (A/E)(e- KY + (_I)NeK(y-N1T) +e-KXcosy) , 

where K is given by 

K = (1 + i)/v2](E8) -I. 

From (47)-( 49) the eit component yields 
rP21z = - 8[ (1 - i)/v'2]A(cosy/cosh d), 

at Z= - d, 

rP21 = 8[ (1 - i)/v'2]A [cosh(z + d)/cosh d] , 
y 

(52) 

(53) 

(54) 

at y=O, (55a) 

rP21 = - [8(1-i)/v'2]A [cosh(z+d)/coshd]( _1)N, 
y 

at y = N1T, (55b) 

rP21x = - Ax [cosh(z + d)/cosh d ]cosy, 

at x=X=O. (56) 
Applying condition (44) and using (52)-(56) to evaluate 
~, yields the solvability condition at second order, 

_ SN1T (A + RA * + DIA) I 
4H x x=x=o 

Sa
L N' + dx ---.!!!... {AT + D 2A} = 0 , 

o H 
where 

R = ~ i L 

dx[ rPizz - (2 + 6H-2)rPi] 

=~[d(H+3H-I) -2], 
S 

DI = [8( 1 - i)/v'2] (2/S) , 

(57) 

(58) 

(59) 

D2 = 8( 1 + i) 
v'2 [ 1 + _1 (1 _ 2d )], 

sinh(2d) N1T sinh 2d 
(60) 

and 

S = 1 + 2d /sinh 2d . (61) 

The terms (57) can be traced to the various inhomogene­
ities; the A x term is a result of the wa vemaker inhomogeneity 
(56), the RA * term is generated by the rPorPt interaction in 
the free-surface boundary condition, and the DI term is gen­
erated by the meniscus region on the wavemaker through the 
free-surface condition. Inside the integral, the AT term is 
generated by the slow r derivative in the free-surface condi­
tion, while D2 contains contributions from the side wall men­
iscus region, the side wall conditions (55a) and (55b), and 
the bottom boundary condition (54). The expression for R 
(58) is evaluated using the identities developed in Appendix 
A. 
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Equation (57) can be satisfied by setting both the con­
stant term at x = X = 0, 

A x = - RA * - DIA , 

and the integrand of the x integral, 

AT +D~ =0, 

(62) 

(63) 

to zero. Equation (63) is now the leading-order evolution 
equation for A, and Eq. (62) is its boundary condition at 
X=O. 

Note that the magnitude of the contribution from the 
meniscus on the wavemaker DI only varies between 8 and 8/ 
2 as the depth changes from shallow to deep. However, the 
dissipation resulting from the side walls and bottom D2 is a 
strong function of the geometry. The first term in (60) is the 
dissipation from the bottom; as can be anticipated,9 its effect 
decreases exponentially with increasing depth as a result of 
the exponential decrease in the potential. The second term 
represents the dissipation resulting from the side walls, in­
cluding the meniscus region; it decreases inversely with the 
mode number N or equivalently inversely with the width of 
the tank at a fixed wavelength. 

Note that the real part of D2 is positive and, consequent­
ly, all solutions to (63) will decay. However, if ID21 S E, the 
next-order correction to (63) may overcome the damping as 
a result of D 2• This will be the case whenever the tank is 
sufficiently wide and deep, or if 8 S E, corresponding to 
(Re) -1/2 S c. To compute the next-order correction to Eq. 
(63), the second-order solution rP2 must be determined and a 
solvability condition for O(c) must be derived. 

Because the solvability condition (57) is satisfied, the 
second-order solution rP2 could now be computed in its en­
tirety. However, as is clear from Jones,2 many portions of rP2 
will not contribute to resonances at order c. Moreover, 
many of the components of rP2 are localized on the wave­
maker and yield only small corrections to the boundary con­
dition (62) and, consequently, are not of importance. Addi­
tionally, there are higher-order corrections to the viscous 
dissipation from the side walls and bottom; these can be ne­
glected relative to D2. The remaining terms in rP2 are all gen­
erated by cross-wave-cross-wave, cross-wave-progressing 
wave, or progressing wave-progressing wave interactions. 
These are computed in Appendix B. 

v. THIRD-ORDER SOLUTION 

In this section a portion of the solvability condition for 
the third-order problem is computed. In particular, the non­
linear interaction of cross-waves and progressing waves, the 
slow variation in X, the effect offrequency detuning, and the 
leading-order contribution of viscous damping as a result of 
the free surface are computed. A number of terms that are 
always formally small relative to the second-order dissipa­
tion term will not be presented here; they have been comput­
ed elsewhere. 16 Specifically, the contribution to (63), as a 
result of the higher-order interactions of the viscous bound­
ary layers on the solid walls, are of the form 

(third-order contribution) -E(D2 fA ~D~ . 

In addition, the term rPlTT is omitted from the free-surface 
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boundary condition because it yields a negligible contribu­
tion of the form 

EA TT ::::: - ED~r :::::E(D2)2A <D~ , 

where (63) has been used to eliminate the time derivatives. 
In the interior of the fluid, the slow variation in X enters 

as an inhomogeneity, 

AtP3 = - tPJ . (64) 
l'\' 

The appropriate boundary conditions are 

tP3, = 0, at y = O,Nrr , 

tP3, = 0 , at z = - d • 

tP3" + HtP3, 

- 2tPJ". + 2Hu2tPJ, - (tPJ" + HtPJ)Z 172 

(65) 

(66) 

- (tP2" + HtP2)z17J - 2(VtPJ'VtPz), - (VtPJ)~17J 

(67) 

In (67), the slow time scale (r'), the frequency detuning 
(tP2)' possibly resonant nonlinear interactions of tPJ and tP2, 
and the viscous free-surface contributions, have been re­
tained. 

Substituting for tPJ and tP2 and retaining resonant (e il
) 

terms yields 

AtP3 = - A,n-eil [cosh(z + d)/cosh d ]cosy, (68) 

with the free-surface boundary condition 

tP3 + HtP3 = {- 2iAr' + 2u~ + Ja e2YRXA 
" z 

where 

Ja = B2{[2(m2 - 241H2) + (1- 91H 2)(M - 5)] 

. [8 + (M - 5)m2 + 24(2 - M)IH 2] 

. [(M-5)2_16]-1+32IH4} (70) 

and 

Jb = (6H -4 - 5H -2 + 16 - 9H 2 )/8, (71) 

with M = sH tanh (sd), s = (m2 + 1) 1/2, and rR = Re{r}. 
Applying (44) yields the solvability condition 

N1T fL dX( _ ~A + 2iAr' - 2u~ 
2H Jo 2 xx 

- Ja /
YRX A - JbA IA 12 + 4i82A ) = o. (72) 

Solvability condition (72) can only be satisfied if the 
integrand is identically zero, i.e., if 

2iAr' = (S 12)Axx + (2u2 + Ja /
YRX - 4i82)A 

+ JbA IA 12. (73) 

It is desirable to combine (63) and (73) into a single 
amplitude equation for Aj this can be done by replacing 
A(x,r,r') by A(X,1), where T=~t is a single long time 
scale. This yields the relation 

aT = (l/E)ar + ar' . (74) 

Using (74) to combine (63) and (73) now yields 
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iAT =~An + (u2 + Ja 
e2YRK - iDo) A + Jb AlA 12, 

4 2 2 

where 

Do = D2 + 2152 

E 

(75) 

= i. 1 + i [ 1 + _1 (1 _ 2d )] + 2152 

E v1 sinh(2d) N1T sinh 2d ' 

with boundary conditions 

Ax = -RA*-DIA, at X=O 

and 

A-O, asX-oo. 

VI. DISCUSSION AND LINEAR ANALYSIS 

A. Comparison to previous work 

(76) 

(77a) 

(77b) 

Equations (75) - (77) describe the evolution of viscous 
cross-waves in a finite-depth box. Far from the wavemaker, 
both the progressing wave and parasitic modes become ex­
ponentially small, leaving a standing wave in a channel mod­
ulated in the transverse direction. In the inviscid limit, this 
problem was considered by Larraza and Putterman,17 and 
their Eq. (15) is identical, after rescaling, to (75), with vis­
cous effects suppressed. Larazza and Putterman 17 noted that 
the coefficient of the nonlinear term Jb is negative for 
0< d < 1.022 (our notation) and positive for greater d; the 
same is true here, and a similar qualitative change in the 
dynamics may be expected. 

Earlier work on cross-waves has concentrated on the 
infinite-depth case with an arbitrarily shaped wavemaker,5,6 
In the limit oflarge depth, the geometry considered here can 
be related to the case of a planar wavemaker of depth d in an 
infinitely deep tank. Because the velocity potential decreases 
rapidly with depth, the difference between the coefficients S, 
Ja • Jb • and R in these two cases is exponentially small in this 
limit. 

The real part of Do takes the form of the heuristic damp­
ing postulated by previous authors.5,6 Three new effects are 
seen here: a viscous detuning corresponding to the imagi­
nary part of Do. a viscous correction to the wavemaker 
boundary conditions as given by DI in (77a), and a slow 
spatial decay of the progressing wave contribution to the 
detuning. 

B. Viscous rescaling 

It is convenient to introduce a viscous scaling for Eqs. 
(75)-(77a), 

x = (21$) (EcIE)X = (2I$)Ec X, 

T= (Ec!E)2T= ~t, 

A = (dEc)( IJb 1/2) 1/2A , 

where Ec, the internal viscous scale, is given by 
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€c = {~e + (2Re)1/2 

. [sinh~2d) + ~1T(I- sin:~2dJ]r/2 
This yields the rescaled NLS equation 

tAT =Axx + (A - i) A ±A IA 1
2

, 

with boundary conditions 

Ax = - RA * - DA, at X = 0, 

(79) 

(80a) 

(80b) 

A -+0, as X-+ 00 • (8Oc) 

The sign of the nonlineari ty in (80a) is chosen to be the same 
as the sign of Jb • There are now three parameters in Eqs. 
( 80): a ratio of scaled forcing amplitude to the internal vis­
cous scale, 

(81a) 

the ratio of wavemaker viscous damping and detuning 
(which is a result solely of the meniscus layer at the wave­
maker) to the internal viscous scale, 

A l-i 
D=, (81b) 

€c(2SRe)1/2 

and a detuning scaled by the viscous damping, 

A = €c- 2
[ (0" - 0"0)/0"0 + Au + (c/2)Ja/ YRX

] . (82) 

There are three contributions to the detuning (82). The first 
comes from variations in the forcing frequency. The second, 

Au = Im{cDo} 

= 1 [ 1 + _1 (1 _ 2d )] (83) 
(2 Re) 1/2 sinh (2d) N1T sinh(2d)' 

is induced by the viscous effects. The third term in (82) is the 
result of the interaction with the slowly decaying progress­
ing wave; in practice, this term is small and will be neglected 
in the linear analysis performed below. 

By considering the size of their contributions to €c' the 
relative importance of the viscous boundary layers at the side 
walls, bottom, and free surface can be determined; this is a 
useful method of comparing experimental facilities. When 
d~! In(8 Re), the damping resulting from the bottom can 
be neglected, relative to that of the surface; in this case, the 
channel will be considered deep. Similarly, when 
N~~2 Re(2 - S)/1T, the side wall damping (including the 
meniscus layer) can be neglected and the channel can be 
considered wide. In a deep, wide tank, the damping from the 
free surface will dominate at €c -~2!Re. The magnitude of 
€c scales the critical value of forcing at which cross-waves 
appear (through R), the width over which resonance is ob­
served (through A), and the skewedness of the neutral sta­
bility curve (through D). 

c. Linear analysis 

For a small cross-wave amplitude, such that the nonlin­
ear term can be neglected, the problem (80) is reduced to a 
linear theory that is amenable to analysis. 2. 12 The most un­
stable eigenmode is given by 

(84) 
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where 

h=hr +ih;=[i(1+q)-A]1/2, hr<O, (85) 

and Ao is a complex constant. The growth rate q is specified 
by the implicit equation 

R2= [A2+ (1 +q)2]1/2+ IDl[v'2(hr +h;) + IDI]. 
(86) 

By setting q = 0 in Eq. (86), an expression for the neutral 
stability curve for the linear excitation of cross-waves is ob­
tainxd. In Fig. 1, neutral stability curvXS are drawn in the 
(A,R 2) plane for various v~lues of the ID I. Note that in the 
limit ofa wide, deep tank, ID I approaches its maximum val­
ue of 11\"1; this corresponds to a curve of maximum skewed­
ness. For tanks that are not both deep and wide, 
I D 1- 11 ffe ~ 1, and the wavemaker viscous effects can be 
ignored. In this case, the stability curve is symmetric. 12 

Note also that the neutral stability curves all lie above 
R = 1; this can be interpreted as the existence of a viscous 
threshold for linear instability to cross-waves, i.e., the scaled 
forcing amplitude, €R .JS /2 must be greater than the inter­
nal viscous scale €c for transition to occur. 

D. Nonviscous dissipation 

In this paper the effects of nonzero viscosity have been 
incorporated into the cross-wave analysis. A further refine­
ment, necessary to describe the evolution in many geome­
tries, would be to include the effects of surface contamina­
tion and surface tension, including capillary hysteresis. 10,18 

As the vorticity would still be contained within small bound­
ary layers, it is our belief that these effects can be treated 
within the framework of the matched asymptotic method­
ology applied here. 

3~--------------~------~-r-r-r~ 

-~.~5--------------~O~'--------------~2.5 
A 

FIG. I. The neutral stability of cross-waves as a function of detuning A and 
scaled forcing squared R 2 for various values of the damping ratio ID I. Insta­
bility occurs above these curves. The dashed lines ( .. -) rep~esent the invis­
cid theory. In the case of a tank, not both deep and wide, ID I = ° and the 
neutral stability curve is symmetric; instability first occurs at zero detuning 
and R 2 = I. As the damping ratio increases, wavemaker damping becomes 
more important, the neutral stability curve becomes lIJ..ore skewed, and on­
set occurs for larger forcing amplitUdes. Note that for ID I jiO, the minimum 
is shifted from the inviscid cutoff frequency. 
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The addition of surface contamination leads to a modifi­
cation of the free-surface boundary layer structure. Models 
of miscible and immiscible surface contaminants that spread 
uniformly may promote the order of the free-surface contri­
bution from liRe to lIy'Re.IO 

Incorporation of surface tension effects is particularly 
important for geometries in which the characteristic length 
scales are less than a few centimeters. Surface tension modi­
fies the dispersion relationship and consequently changes 
the coefficients in the governing nonlinear SchrOdinger 
equation.6 A more formidable problem is the addition of 
capillary hysteresis; a preliminary model of this phenome­
non has been proposed by Hocking. IS Because of the singular 
behavior of the contact angle, this phenomenon's modifica­
tion of the evolution equations is difficult to predict. 

VII. CONCLUSIONS 

In summary, the results here allow a precise determina­
tion of viscous damping in wave tanks of arbitrary dimen­
sion: the relative viscous contributions from the free-surface, 
side wall, bottom, and wavemaker can be computed. It is 
necessary to modify the Havelock 14 solution to include a 
slow decay of the progressing wave. The modification of the 
wavemaker boundary conditions leads to a skewing of the 
neutral stability curves; this effect, which is observed experi­
mentally, will be examined in more detail in future work. 
This work also allows the quantitative determination of the 
viscous contributions to the heuristic linear damping and 
detuning suggested by previous authors. By incorporating 
and expanding the ideas of Mei and Liu,9 a methodology for 
the modulation theory for viscous cross-waves has been pre­
sented. By using the Green's identity for the solvability con­
dition, Jones' method2 is shortened considerably. This meth­
odology can be applied to viscous effects in related problems. 
In addition, the formalism developed here will hopefully al­
low the inclusion of non viscous effects, which are important 
in many geometries. 
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APPENDIX A: THE HAVELOCK SOLUTION 

The solution to the wavemaker problem specified by 
(34) and (35), in the inviscid limit, was considered by Have­
lock. 14 The solution can be found as a sum of eigenmodes of 
the Laplacian satisfying the free-surface and bottom bound­
ary conditions, 
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¢i = Be- imx cosh m(z + d) 
cosh md 

~'R - mj' cos mj (z + d) + £..1 je , 
j cos mjd 
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(AI) 

where m and mj must satisfy the eigenvalue relationships 

mHtanh(md) =4, m>O, (A2a) 

mjHtan(mjd) = -4, mj>O, (A2b) 

and Band Bj are unknown coefficients to be determined. The 
first term in (AI) represents a progressing wave traveling 
away from the wavemaker; the corresponding solution, rep­
resenting a wave moving toward the wavemaker, can be ne­
glected by imposing a radiation condition or, equivalently, 
adding a small amount of dissipation and requiring that the 
disturbance decay for large x. The remaining terms in (A 1 ) 
represent "parasitic modes," localized eigenmodes that de­
cay exponentially with distance from the wavemaker. 

The coefficients Band Bj are determined by the inhomo­
geneous wavemaker boundary condition (35b); the inhomo­
geneity must be projected onto the eigenmodes at x = O. This 
yields 14 

B = 8H /[ (l6d - 4H)m - m 3H 2d] , 

Bj = 8H /[ (l6d - 4H)mj + mJH 2d] . 

(A3a) 

(A3b) 

It is desirable to incorporate leading-order viscous ef­
fects into the solution ¢;. The viscous damping of the parasit­
ic modes introduces an order (E8) local correction and can 
safely be neglected. However, the progressing wave's ampli­
tude will decay and be detuned on a length scale that may be 
comparable to that of the cross-wave. To incorporate this 
fact, the amplitude, B, is multiplied by a complex exponen­
tial acting on the long length scale X, i.e., B _BeYx. The con­
stant ycan easily be computed from (34) and (35a)-(35e), 
and is given in (37). The interested reader is directed to the 
work of Mei and Liu9 for details. 

1. Computation of R 

In Sec. IV D the computation of R, the effective forcing, 
is reduced to evaluating certain integrals of ¢;. These are 
evaluated below. First, note that 

(A4) 

therefore 

i
L 

¢; dx= -iL 

¢; dx o %:t 0 xx 

= ¢i
x 

SoL = i + O(E8) , at z = 0, (A5) 

where the slow decay of the progressing wave has been used 
to eliminate the contribution from the far end (x = L) and 
the small error is introduced by the viscous effects. 

The evaluation ofthe second integral is much more diffi­
cult. To this end, we introduce, deus ex machina, a contour 
integral for ¢i' 

¢i = L e - qX<I>(q,z)dq, (A6) 

where 

<I>(q,z) = __ 1_ (COS q(z + d») 4 (A 7) 
1Tq2 cos qd Hq tan qd + 4 

and r is the contour that starts at - i 00, follows the imagi­
nary axis to + i 00 , and is indented into the right half-plane 

Bernoff, Kwok, and Lichter 686 

Downloaded 02 Mar 2011 to 134.173.130.140. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



at - im and 0 and into the left half-plane at + im. The 
reader is invited to demonstrate that expressions (AI) and 
(A6) are equivalent by closing the contour r through the 
right half-plane and summing over the residue for the poles 
at q = im,mj • 

To evalute the integral in (58), note that 

lim (L <Pi dxl = ( ~ <I> (q,O)dq . (A8) 
L-= Jo z=o Jr q 

Because <1>( - q,O) = <I> (q,O), the integral on r vanish­
es as a result of symmetry everywhere, except on the indenta­
tion at the origin. Consequently, the contour r can be re­
placed by a semicircle around the origin, or, using symmetry 
again, half the value of a loop around the origin, 

lim (L <Pi dxl 
L-- 00 Jo z = 0 

= ~ j dq ~ <I> (q,O) 
2 ~=o q 

f2~~3(4 + H q2: + O(q4») 

j -.!!!L(l _ H dq2 + O( 4») = iHd (A9) 
j' 21Tq3 4 q 4' 

where the last step is evaluated using Cauchy's residue 
theorem. This identity allows R to be expressed in closed 
form in Sec. IV D. 

APPENDIX B: SECOND-ORDER SOLUTION 

In this appendix the portion of <P2 that contributes to 
resonances in the interior of the fluid are computed. As dis­
cussed in the text, nonresonant terms, terms that are local­
ized on the wavemaker and consequently contribute only to 
the boundary condition, and higher-order viscous correc­
tions, are not reported here; most of these terms have been 
computed 16 and are small compared to those retained. Fol­
lowing (50), a solution of the form 

<P2 = <P2leit + <P22e2it + <P23e3it 

+ <P24 + C.c. + nondominant terms (Bl) 

is solved for below. 

1. cfJ21: Resonant interaction 

The resonant contribution at second order <PZI was con­
sidered in Sec. IV. Because the first-order solution <PI con­
tains no terms constant in time, <P21 cannot contribute to 
resonance at third order and, as such, it is not computed 
here. 

2. cfJ22: Cross-wave-cross-wave interaction 

Naively, one might guess that cross-wave-cross-wave 
interactions lead to components with constant and e ± Zit 
time dependence; however, the constant term vanishes. 2 The 
remaining component <P22 satisfies the homogeneous prob­
lem (38) and (39b)-(3ge), together with the free-surface 
boundary condition 
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H<P22z - 4¢22 = - (i/2) [1 + 3H-2 

+ 3(H-2 
- l)cos(2y) JA 2, at z = o. 

(B2) 

This can be solved for directly. 2, 16 The solution is given 
by 

<P22 = (i/8)[ 1 + 3H -z + 3H 2(H -4 - 1) 

· cos 2y {cosh[2(z + d) J/cosh(2d)} JA Z • (B3) 

3. cfJ23: Cross-wave-progressing wave interaction 

The cross-wave-progressing wave interaction has two 
pieces: a resonant portion (e ± it), considered in <PZI' and a 
nonresonant portion <P23' with time dependence like e ± 3it, 
considered here. We see that <PZ3 satisfies the homogeneous 
problem (38) and (39b)-(3ge), together with the free-sur­
face boundary condition 

H<P23z - 9<P23 = iAeYXe - imx 

X cosy(2+m2-42H-2) , at z=O. 

(B4) 

A solution can be found in the same fashion as the Have­
lock solution in Appendix A. 2,16 

<P23 = iAeYXe - imx cos y 

· [cosh s(z + d)/cosh sd J 

· {2 + m2 - 42H-2/[sHtanh(sd) - 9J} + ~23' 
(B5) 

where 

s=..Jii1+1. (B6) 

The correction ~Z3 is localized near the wavemaker and 
corresponds to the parasitic modes in the Havelock solution. 
It will only yield a higher-order correction to the wavemaker 
boundary condition, and, as such, need not be computed. 

4. cfJ24: Progressing wave-progressing wave interaction 

The progressing wave-progressing wave interaction 
contains two components. A term with time dependence like 
e ± 4it occurs; because the first-order solution only has terms 
like e ± it and e ± 2it, no resonance can occur. The second com­
ponent has terms that are constant in time; however, these 
terms all cancel.2

•
16 This leads to the conclusion 

(B7) 

The expressions for <P2 can now be used to compute the solv­
ability condition on <P at third order. 
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