69 research outputs found

    Quantitative cross-species extrapolation between humans and fish: The case of the anti-depressant fluoxetine

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Fish are an important model for the pharmacological and toxicological characterization of human pharmaceuticals in drug discovery, drug safety assessment and environmental toxicology. However, do fish respond to pharmaceuticals as humans do? To address this question, we provide a novel quantitative cross-species extrapolation approach (qCSE) based on the hypothesis that similar plasma concentrations of pharmaceuticals cause comparable target-mediated effects in both humans and fish at similar level of biological organization (Read-Across Hypothesis). To validate this hypothesis, the behavioural effects of the anti-depressant drug fluoxetine on the fish model fathead minnow (Pimephales promelas) were used as test case. Fish were exposed for 28 days to a range of measured water concentrations of fluoxetine (0.1, 1.0, 8.0, 16, 32, 64 μg/L) to produce plasma concentrations below, equal and above the range of Human Therapeutic Plasma Concentrations (HTPCs). Fluoxetine and its metabolite, norfluoxetine, were quantified in the plasma of individual fish and linked to behavioural anxiety-related endpoints. The minimum drug plasma concentrations that elicited anxiolytic responses in fish were above the upper value of the HTPC range, whereas no effects were observed at plasma concentrations below the HTPCs. In vivo metabolism of fluoxetine in humans and fish was similar, and displayed bi-phasic concentration-dependent kinetics driven by the auto-inhibitory dynamics and saturation of the enzymes that convert fluoxetine into norfluoxetine. The sensitivity of fish to fluoxetine was not so dissimilar from that of patients affected by general anxiety disorders. These results represent the first direct evidence of measured internal dose response effect of a pharmaceutical in fish, hence validating the Read-Across hypothesis applied to fluoxetine. Overall, this study demonstrates that the qCSE approach, anchored to internal drug concentrations, is a powerful tool to guide the assessment of the sensitivity of fish to pharmaceuticals, and strengthens the translational power of the cross-species extrapolation

    Efficient Conversion of Astrocytes to Functional Midbrain Dopaminergic Neurons Using a Single Polycistronic Vector

    Get PDF
    Direct cellular reprogramming is a powerful new tool for regenerative medicine. In efforts to understand and treat Parkinson's Disease (PD), which is marked by the degeneration of dopaminergic neurons in the midbrain, direct reprogramming provides a valuable new source of these cells. Astrocytes, the most plentiful cells in the central nervous system, are an ideal starting population for the direct generation of dopaminergic neurons. In addition to their potential utility in cell replacement therapies for PD or in modeling the disease in vitro, astrocyte-derived dopaminergic neurons offer the prospect of direct in vivo reprogramming within the brain. As a first step toward this goal, we report the reprogramming of astrocytes to dopaminergic neurons using three transcription factors – ASCL1, LMX1B, and NURR1 – delivered in a single polycistronic lentiviral vector. The process is efficient, with 18.2±1.5% of cells expressing markers of dopaminergic neurons after two weeks. The neurons exhibit expression profiles and electrophysiological characteristics consistent with midbrain dopaminergic neurons, notably including spontaneous pacemaking activity, stimulated release of dopamine, and calcium oscillations. The present study is the first demonstration that a single vector can mediate reprogramming to dopaminergic neurons, and indicates that astrocytes are an ideal starting population for the direct generation of dopaminergic neurons

    Roles of glial cells in synapse development

    Get PDF
    Brain function relies on communication among neurons via highly specialized contacts, the synapses, and synaptic dysfunction lies at the heart of age-, disease-, and injury-induced defects of the nervous system. For these reasons, the formation—and repair—of synaptic connections is a major focus of neuroscience research. In this review, I summarize recent evidence that synapse development is not a cell-autonomous process and that its distinct phases depend on assistance from the so-called glial cells. The results supporting this view concern synapses in the central nervous system as well as neuromuscular junctions and originate from experimental models ranging from cell cultures to living flies, worms, and mice. Peeking at the future, I will highlight recent technical advances that are likely to revolutionize our views on synapse–glia interactions in the developing, adult and diseased brain

    Cross-species extrapolation of biological data to guide the environmental safety assessment of pharmaceuticals - The state of the art and future priorities

    No full text
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordData availability statement: No data were generated for the preparation of this manuscript.The extrapolation of biological data across species is a key aspect of biomedical research and drug development. In this context, comparative biology considerations are applied with the goal of understanding human disease and guiding the development of effective and safe medicines. However, the widespread occurrence of pharmaceuticals in the environment and the need to assess the risk posed to wildlife has prompted a renewed interest in the extrapolation of pharmacological and toxicological data across the entire tree of life. To address this challenge, a biological 'read-across' approach, based on the use of mammalian data to inform toxicity predictions in wildlife species, has been proposed as an effective way to streamline the environmental safety assessment of pharmaceuticals. Yet, how effective has this approach been, and are we any closer to being able to accurately predict environmental risk based upon known human risk? Here, we discuss the main theoretical and experimental advancements achieved in the last ten years of research in this field. We propose that a better understanding of the functional conservation of drug targets across species, and of the quantitative relationship between target modulation and adverse effects, should be considered as future research priorities. This pharmacodynamic focus should be complemented with the application of higher throughput experimental and computational approaches to accelerate the prediction of internal exposure dynamics. The translation of comparative (eco)toxicology research into real-world applications, however, relies on the (limited) availability of experts with the skill set needed to navigate the complexity of the problem; hence, here we also call for synergistic multi-stakeholder efforts to support and strengthen comparative toxicology research and education at a global level.UK National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs)King’s College London, School of Cancer and Pharmaceutical ScienceRoyal SocietyBiotechnology and Biological Sciences Research Council (BBSRC)AstraZenecaUniversity of Exeter, Faculty of Health and Life Science

    Differential routing of 'new' nitrogen toward higher trophic levels within the marine food web of the Gulf of Aqaba, Northern Red Sea

    Get PDF
    Mesozooplankton communities in the mesooligotrophic Gulf of Aqaba, Northern Red Sea, were investigated over a 2 years period (2005-2007) with emphasis on the trophodynamic relations among different taxonomic groups ranging from primary consumers to carnivorous predators. Based on stable isotope analyses, we present evidence for a strong contribution of 'new' nitrogen mainly derived from the utilization of aerosol nitrate by unicellular cyanobacteria especially during summer stratification and the propagation of exceptionally low δ15N onto higher trophic levels. In contrast, N2-fixation by diazotrophs seemed to play a minor role, while the utilization of deep water nitrate by cyanobacteria and eukaryotic algae might be of importance during winter mixing. Based on 15N enrichment of consumers, clear differences between exclusively herbivorous organisms (doliolids, appendicularians, pteropods) and those with omnivorous feeding modes were detected. The category of omnivores comprised a large variety of taxons ranging from small meroplanktonic larvae to non-calanoid copepods (harpacticoids, cyclopoids and poecilostomatoids) that together form a diverse and complex community with overlapping feeding modes. In addition, distinct seasonality patterns in δ15N of copepods were found showing elevated trophic positions during periods of winter mixing, which were most pronounced for non-calanoid copepods. In general, feeding modes of omnivores appeared rather unselective, and relative contributions of heterotrophic protists and degraded material to the diets of non-calanoid copepods are discussed. At elevated trophic positions, four groups of carnivore predators were identified, while calanoid copepods and meroplanktonic predators showing lowest 15N enrichment within the carnivores. The direct link between 'new' nitrogen utilization by primary producers and the 15N enrichment of consumers in the planktonic food web of the Gulf of Aqaba emphasizes the significant contribution of 'new' nitrogen to the nitrogen budget and ecosystem functions in subtropical and tropical oligotrophic oceans

    Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming

    Get PDF
    This study aimed at simulating different degrees of winter warming and at assessing its potential effects on ciliate succession and grazing-related patterns. By using indoor mesocosms filled with unfiltered water from Kiel Bight, natural light and four different temperature regimes, phytoplankton spring blooms were induced and the thermal responses of ciliates were quantified. Two distinct ciliate assemblages, a pre-spring and a spring bloom assemblage, could be detected, while their formation was strongly temperature-dependent. Both assemblages were dominated by Strobilidiids; the pre-spring bloom phase was dominated by the small Strobilidiids Lohmaniella oviformis, and the spring bloom was mainly dominated by large Strobilidiids of the genus Strobilidium. The numerical response of ciliates to increasing food concentrations showed a strong acceleration by temperature. Grazing rates of ciliates and copepods were low during the pre-spring bloom period and high during the bloom ranging from 0.06 (Δ0°C) to 0.23 day−1 (Δ4°C) for ciliates and 0.09 (Δ0°C) to 1.62 day−1 (Δ4°C) for copepods. During the spring bloom ciliates and copepods showed a strong dietary overlap characterized by a wide food spectrum consisting mainly of Chrysochromulina sp., diatom chains and large, single-celled diatoms
    corecore