25 research outputs found

    Targeting CD226/DNAX accessory molecule-1 (DNAM-1) in collagen-induced arthritis mouse models

    Get PDF
    International audienceBackground: Genetic studies have pointed out that CD226 variants, encoding DNAM-1, could be associated with susceptibility to rheumatoid arthritis. Therefore, we aimed to determine the influence of DNAM-1 on the development of arthritis using the collagen-induced arthritis (CIA) mouse model. Methods: CIA was induced in mice on a DBA/1 background, treated in parallel with a DNAM-1 neutralizing monoclonal antibody, a control IgG and PBS, respectively. CIA was also induced in mice deficient for DNAM-1(dnam1−/−) and control dnam-1+/+ mice on a C57/BL6 background. Mice were monitored for clinical and ultrasound signs of arthritis. Histological analysis was performed to search for inflammatory infiltrates and erosions. The Mann–Whitney U test for non-related samples was used for statistical analysis. Results: There was a non-significant trend for a less arthritic phenotype in mice receiving anti-DNAM-1 mAb at both clinical, ultrasound and histological assessments. But, we did not observe any difference between dnam1+/+ and dnam1−/− mice for incidence nor severity of clinical arthritis. Histological analysis revealed inflammatory scores similar in both groups, without evidence of erosion. Collagen antibodies levels were similar in all mice, confirming immunization with collagen. Conclusion: Despite some clues suggesting a role of DNAM-1 in arthritis, these complementary approaches demonstrate no contribution of CD226/DNAM-1 in the arthritic phenotype. These results contrast with previous studies showing a role in vivo of DNAM-1 in some autoimmune disorders

    Mediated catalytic voltammetry of holo and heme-free human sulfite oxidases

    Get PDF
    Herein, we report the electrocatalytic voltammetry of holo and heme-free human sulfite oxidase (HSO) mediated by the synthetic iron complexes 1,2-bis(1,4,7-triaza-1-cyclononyl)ethane iron(III) bromide, ([Fe(dtne)]Br.3HO), potassium ferricyanide (K[Fe(CN)]), and ferrocene methanol (FM) at a 5-(4′-pyridinyl)-1,3,4-oxadiazole-2-thiol (Hpyt) modified gold working electrode. Holo HSO contains two electroactive redox cofactors, comprising a mostly negatively charged cyt b (heme) domain and a Mo cofactor (Moco) domain (the site of sulfite oxidation), where the surface near the active site is positively charged. We anticipated different catalytic voltammetry based on either repulsive or attractive electrostatic interactions between the holo or heme-free enzymes and the positively or negatively charged redox mediators. Both holo and heme-free HSO experimental catalytic voltammetry has been modeled by using electrochemical simulation across a range of sweep rates and concentrations of substrate and both positive and negatively charged electron acceptors ([Fe(dtne)], [Fe(CN)] and FM), which provides new insights into the kinetics of the HSO catalytic mechanism. These mediator complexes have almost the same redox potential (all lying in the range +415 to +430 mV vs. NHE) and, thus, deliver the same driving force for electron transfer with the Mo cofactor. However, differences in the electrostatic affinities between HSO and the mediator have a significant influence on the electrocatalytic response

    Angiographic correlations of patients with small vessel disease diagnosed by adenosine-stress cardiac magnetic resonance imaging

    Get PDF
    Cardiac magnetic resonance imaging (CMR) with adenosine-stress myocardial perfusion is gaining importance for the detection and quantification of coronary artery disease (CAD). However, there is little knowledge about patients with CMR-detected ischemia, but having no relevant stenosis as seen on coronary angiography (CA). The aims of our study were to characterize these patients by CMR and CA and evaluate correlations and potential reasons for the ischemic findings. 73 patients with an indication for CA were first scanned on a 1.5T whole-body CMR-scanner including adenosine-stress first-pass perfusion. The images were analyzed by two independent investigators for myocardial perfusion which was classified as subendocardial ischemia (n = 22), no perfusion deficit (n = 27, control 1), or more than subendocardial ischemia (n = 24, control 2). All patients underwent CA, and a highly significant correlation between the classification of CMR perfusion deficit and the degree of coronary luminal narrowing was found. For quantification of coronary blood flow, corrected Thrombolysis in Myocardial Infarction (TIMI) frame count (TFC) was evaluated for the left anterior descending (LAD), circumflex (LCX) and right coronary artery (RCA). The main result was that corrected TFC in all coronaries was significantly increased in study patients compared to both control 1 and to control 2 patients. Study patients had hypertension or diabetes more often than control 1 patients. In conclusion, patients with CMR detected subendocardial ischemia have prolonged coronary blood flow. In connection with normal resting flow values in CAD, this supports the hypothesis of underlying coronary microvascular impairment. CMR stress perfusion differentiates non-invasively between this entity and relevant CAD

    Differential diagnosis of parkinsonism based on deep metabolic imaging indices.

    Get PDF
    The clinical presentations of early idiopathic Parkinson's disease (PD) substantially overlap with those of atypical parkinsonian syndromes like multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). This study aimed to develop metabolic imaging indices based on deep learning to support the differential diagnosis of these conditions. Methods: A benchmark Huashan parkinsonian PET imaging (HPPI, China) database including 1275 parkinsonian patients and 863 non-parkinsonian subjects with 18F-FDG PET images was established to support artificial intelligence development. A 3D deep convolutional neural network was developed to extract deep metabolic imaging (DMI) indices, which was blindly evaluated in an independent cohort with longitudinal follow-up from the HPPI, and an external German cohort of 90 parkinsonian patients with different imaging acquisition protocols. Results: The proposed DMI indices had less ambiguity space in the differential diagnosis. They achieved sensitivities of 98.1%, 88.5%, and 84.5%, and specificities of 90.0%, 99.2%, and 97.8% for the diagnosis of PD, MSA, and PSP in the blind test cohort. In the German cohort, They resulted in sensitivities of 94.1%, 82.4%, 82.1%, and specificities of 84.0%, 99.9%, 94.1% respectively. Employing the PET scans independently achieved comparable performance to the integration of demographic and clinical information into the DMI indices. Conclusion: The DMI indices developed on the HPPI database show potential to provide an early and accurate differential diagnosis for parkinsonism and is robust when dealing with discrepancies between populations and imaging acquisitions

    Chitosan-Promoted Direct Electrochemistry of Human Sulfite Oxidase

    No full text
    Direct electrochemistry of human sulfite oxidase (HSO) has been achieved on carboxylate-terminated self-assembled monolayers cast on a Au working electrode in the presence of the promoter chitosan. The modified electrode facilitates a well-defined nonturnover redox response from the heme cofactor (Fe-III/II) in 750 mM Tris, MOPS, and bicine buffer solutions. The formal redox potential of the nonturnover response varies slightly depending on the nature of the thiol monolayer on the Au electrode. Upon addition of sulfite to the cell a pronounced catalytic current from HSO-facilitated sulfite oxidation is observed. The measured catalytic rate constant (k(cat)) is around 0.2 s(-1) (compared with 26 s(-1) obtained from solution assays), which indicates that interaction of the enzyme with the electrode lowers overall catalysis although native behavior is retained in terms of substrate concentration dependence, pH dependence, and inhibition effects. In contrast, no catalytic activity is observed when HSO is confined to amine-terminated thiol monolayers although well-defined noncatalytic responses from the heme cofactor are still observed. These differences are linked to flexibility of HSO, which can switch between active and inactive conformations, and also competitive ion exchange processes at the electrode surface involving the enzyme and substrate

    Low Potential Catalytic Voltammetry of Human Sulfite Oxidase

    No full text
    Mediated electrocatalytic voltammetry of human sulfite oxidase (HSO) is demonstrated with synthetic one electron transfer iron complexes bis(1,4,7-triazacyclononane)iron(III) ([Fe(tacn)(2)](3+)) and 1,2-bis (1,4,7-triaza-1-cyclononyl)ethane iron(III) ([Fe(dtne)](3+)) at a glassy carbon working electrode. The two synthetic electron acceptors for HSO, differing in redox potential by 270 mV, deliver different driving forces for electrocatalysis. Digital simulation of the catalytic voltammetry was achieved with single set of enzyme-dependent kinetic parameters that reproduced the experimental data across a range of sweep rates, and sulfite and mediator concentrations. Amperometry carried out in a stirred solution with the lower potential mediator [Fe(tacn)(2)](3+) was optimised and exhibited a linear increase in steady state current in the sulfite concentration range 5.0 x 10(-6) to 8.0 x 10(-4) M with a detection limit of 0.2 pM (S/N = 3). The HSO coupled electrode was successfully used for the determination of sulfite concentration in white wine and beer samples and the results validated with a standard spectrophotometric method. (C) 2016 Elsevier Ltd. All rights reserved

    Mediated electrochemistry of nitrate reductase from Arabidopsis thaliana

    No full text
    Herein we report the mediated electrocatalytic voltammetry of the plant molybdoenzyme nitrate reductase (NR) from Arabidopsis thaliana using the established truncated molybdenum-heme fragment at a glassy carbon (GC) electrode. Methyl viologen (MV), benzyl viologen (BV), and anthraquinone-2- sulfonic acid (AQ) are employed as effective artificial electron transfer partners for NR, differing in redox potential over a range of about 220 mV and delivering different reductive driving forces to the enzyme. Nitrate is reduced at the Mo active site of NR, yielding the oxidized form of the enzyme, which is reactivated by the electro-reduced form of the mediator. Digital simulation was performed using a single set of enzyme dependent parameters for all catalytic voltammetry obtained under different sweep rates and various substrate or mediator concentrations. The kinetic constants from digital simulation provide new insight into the kinetics of the NR catalytic mechanism

    Poliovirus receptor CD155–targeted oncolysis of glioma1

    Get PDF
    Cell adhesion molecules of the immunoglobulin superfamily are aberrantly expressed in malignant glioma. Amongst these, the human poliovirus receptor CD155 provides a molecular target for therapeutic intervention with oncolytic poliovirus recombinants. Poliovirus has been genetically modified through insertion of regulatory sequences derived from human rhinovirus type 2 to selectively replicate within and destroy cancerous cells. Efficacious oncolysis mediated by poliovirus derivatives depends on the presence of CD155 in targeted tumors. To prepare oncolytic polioviruses for clinical application, we have developed a series of assays in high-grade malignant glioma (HGL) to characterize CD155 expression levels and susceptibility to oncolytic poliovirus recombinants. Analysis of 6 HGL cases indicates that CD155 is expressed in these tumors and in primary cell lines derived from these tumors. Upregulation of the molecular target CD155 rendered explant cultures of all studied tumors highly susceptible to a prototype oncolytic poliovirus recombinant. Our observations support the clinical application of such agents against HGL
    corecore