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ABSTRACT  

The clinical presentations of early idiopathic Parkinson’s disease (PD) substantially overlap with those of 

atypical parkinsonian syndromes like multiple system atrophy (MSA) and progressive supranuclear palsy 

(PSP). This study aimed to develop metabolic imaging indices based on deep learning to support the 

differential diagnosis of these conditions. Methods: A benchmark Huashan parkinsonian PET imaging 

(HPPI, China) database including 1275 parkinsonian patients and 863 non-parkinsonian subjects with 18F-

FDG PET images was established to support artificial intelligence development. A 3D deep convolutional 

neural network was developed to extract  deep metabolic imaging (DMI) indices, which was blindly 

evaluated in an independent cohort with longitudinal follow-up from the HPPI, and an external German 

cohort of 90 parkinsonian patients with different imaging acquisition protocols. Results: The proposed 

DMI indices had less ambiguity space in the differential diagnosis. They achieved sensitivities of 98.1%, 

88.5%, and 84.5%, and specificities of 90.0%, 99.2%, and 97.8% for the diagnosis of PD, MSA, and PSP 

in the blind test cohort. In the German cohort, They resulted in sensitivities of 94.1%, 82.4%, 82.1%, and 

specificities of 84.0%, 99.9%, 94.1% respectively. Employing the PET scans independently achieved 

comparable performance to the integration of demographic and clinical information into the DMI indices. 

Conclusion: The DMI indices developed on the HPPI database show potential to provide an early and 

accurate differential diagnosis for parkinsonism and is robust when dealing with discrepancies between 

populations and imaging acquisitions.  

 

Keywords: Parkinson’s disease; atypical parkinsonian syndrome; differential diagnosis; deep learning; 

deep metabolic imaging indices 
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INTRODUCTION  

Idiopathic Parkinson’s disease (IPD) is one of the most common neurodegenerative disorders. 

Although extensively studied, its accurate diagnosis remains clinically challenging, particularly in early 

stage patients, since their syptoms overlap largely with atypical parkinsonian syndromes like multiple 

system atrophy (MSA) and progressive supranuclear palsy (PSP) (1). Approximately 20-30% patients 

with initial diagnoses of IPD were subsequently demonstrated to be either MSA or PSP at pathological 

examination (1). The development of accurate indices for parkinsonism’s differential diagnosis is of 

importance and potential utility when determining therapeutic strategies. 

18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) detects a wide spectrum of 

neurobiological abnormalities and has been reported of advantage in the differential diagnosis of 

parkinsonism in advance of structural damage to brain (2). Metabolic patterns of IPD, MSA, and PSP 

identified by principal component analysis (PCA) (3,4), which were used as features for a machine 

learning method of logistic regression, have been found as effective surrogates for the early and accurate 

differential diagnosis (5). However, the PCA decomposition takes the 3D image volume of a subject as a 

squeezed 1D vector without considering the high-level spatial interrelation during the pattern extraction. 

The differences among parkinsonism are reflected in the complex interaction of interrelated brain 

regions. The differential indices may be obscured by complexity within the metabolic imaging signal. We 

hypothesized that deep learning may reveal characteristic imaging indices from complex metabolic 

alterations and provide accurate classifications (6). Therefore, a 3D deep residual convolutional neural 

network termed PD Diagnosis Network (PDD-Net) was built for the automatic identification of imaging-

related indices to support parkinsonism’s differential diagnosis. 
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MATERIALS AND METHODS  

Subjects and Study Protocol  

Huashan Parkinsonian PET Imaging (HPPI) Database. A largest and unique HPPI database has 

been established to benchmark the imaging-based artificial intelligence development for parkinsonism. 

This database includes three cohorts with a total of 1275 parkinsonian patients (subset of PD Database 

and Samples Bank of Huashan Hospital) (Fig.1, Supplemental Table 1, Supplemental Table 2) (7-11). 

Among them, 85.7% performed dopaminergic imaging at the same time as 18F-FDG to assist the diagnosis 

and the remaining have been followed up for a long time to determine the diagnosis. A control cohort of 

643 patients with various neurological disorders and 220 healthy subjects was also enrolled (Fig.1, 

Supplemental Table 3, Supplemental Table 4, Supplemental Fig.1 ). 

The HPPI database includes pre-training (398 subjects with possible diagnoses), training (547 

subjects with definite diagnoses), and blind-test (330 subjects with confirmative diagnoses with follow-

up) cohorts (Fig.1, Table 1). These patients were routinely assessed by movement disorders specialists in 

Huashan Hospital before PET examination between June 2011 and April 2019. Routine MRI examinations 

were performed before PET scans and those with structural brain abnormalities were excluded. After PET 

examination, patients had at least one return visit and the movement disorders specialists made a clinical 

diagnosis according to the latest clinical criteria (9-11). 

After a low-dose CT for attenuation correction, the emission data was acquired at 60-minute (lasting 

10 min) post injection of approximately 185 MBq 18F-FDG with Biograph 64 HD PET/CT (Siemens, 

Germany). Following corrections for attenuation, scatter, dead time, and random coincidences, PET 

images were reconstructed using the ordered subset expectation maximization method. 
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German Parkinsonian Cohort. A German cohort with 34 IPD, 17 MSA and 39 PSP patients from 

the University Hospital of Munich was included for external validation. These patients were scanned on 

three different PET/CT systems (ECAT Exact HR+, GE Discovery 690, and Siemens Biograph 64) 

according to the EANM protocol (12) using a slow bolus injection of approximately 150 MBq 18F-FDG 

(Supplemental Table 5). The uptake difference between cohorts are presented in Supplemental Fig. 2. 

The institutional review boards (IRB or equivalent from Huashan Hospital and University of Munich) 

approved this study and all subjects signed a written informed consent. 

Image Preprocessing  

PET images were spatially normalized into Montreal Neurological Institute brain space and 

smoothed by a 3D Gaussian filter of 10 mm full width at half maximum by SPM5 software (Institute of 

Neurology, London, UK). Before inputting the PET image into the deep neural network, Z-score 

normalization was applied to convert PET image values into a certain range for facilitating the network 

training. Besides, the performance of utilizing the Z-score normalization and the global mean 

normalization were also compared (Supplemental Table 6). 

Parkinsonism Differential Neural Network (PDD-Net) & Deep Metabolic Imaging (DMI) Indices  

The deep learning method contains two PDD-Nets (Supplemental Fig. 3). The PDD-Net-1 sought to 

exclude patients without parkinsonism. The PDD-Net-2 performed computation of deep metabolic 

imaging (DMI) indices and classification of IPD, MSA, or PSP. Both PDD-Nets were based on a 3D 

residual convolutional neural network. The PDD-Net 2 was trained preliminarily in the pre-training 

cohort, and then fine-tuned in the training cohort. The performance of the DMI indices was evaluated with 

cross-validation (six-fold) in the training cohort and then an independent test in the blind-test cohort and 

the external Germany cohort.  
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At the end of the PDD-Net, the extracted features were mapped to three classification probabilities 

of IPD, MSA, and PSP correspondingly, which were proposed as the DMI indices. The highest probability 

among the DMI indices was considered for the prediction of IPD, MSA, or PSP. An additional option of 

confidence inspection was provided to warn the predictions without sufficiently high probability. A 

confidence threshold can be customized. By default, a set of confidence thresholds were derived in the 

cross-validation stage based on the generalized Youden’s index. Predictions lying below these thresholds 

were flagged as uncertain cases (Supplemental Table 7). We generated saliency maps using the full-

gradient method (13) to assist the interpretation of the DMI indices. The saliency maps assign importance 

scores to both the input features and individual neurons in a network, which reflects the contribution of 

groups of pixels to the DMI probabilities. 

Statistical Analysis  

The confidence intervals were calculated with DeLong’s method (1988). The optimal cutoff points 

of the receiver operating characteristic curves were estimated using the generalized Youden’s index. For 

continuous variables, the Wilcoxon test was used to compare two paired groups and the Kolmogorov-

Smirnov test was used to compare two unpaired groups. While for categorical variables, the Chi-square 

test was used. Four standard metrics, i.e., sensitivity, specificity, positive predictive value (PPV), and 

negative predictive value (NPV), were employed to illustrate the diagnostic performance of the DMI 

indices. 
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RESULTS  

Performance of the DMI Indices in Cross-validation  

The performance of the DMI indices in the cross-validation is illustrated in Fig. 2. The area under 

the curves were 0.986, 0.997, and 0.982 for IPD, MSA and PSP, respectively. The sensitivity, specificity, 

PPV, and NPV are summarized in Table 2, and all values were above 90% except for sensitivity and PPV 

for PSP with short symptom durations. Compared to those with short symptom durations, the specificity 

for those with long symptom durations slightly increased for IPD and MSA, while remained the same for 

PSP.  

The probabilities of IPD, MSA, and PSP according to the DMI indices for individual subjects are 

plotted in 3D coordination space in Fig. 3. These probabilities tended to distribute aggregately to their 

expected centers: IPD for [1,0,0], MSA for [0,1,0], and PSP for [0,0,1]. If the probability for a category 

was high, the probabilities for the other two categories were much smaller. The aggregation distance, 

which is the mean distance of the probabilities to the corresponding expected centers, illustrates the 

determinability of the DMI indices. The probabilities of those with long symptom durations (aggregative 

distance=0.103) were more aggregated (P=0.020) compared to the subjects with short symptom durations 

(aggregative distance=0.114). Overall, the probabilities among the DMI indices had less ambiguity space 

for differential diagnosis. 

The saliency maps are showed in Supplemental Fig. 4-6 (13). Regions with relatively higher 

contribution to the DMI indices were putamen and midbrain for IPD, MSA, and PSP as well as cerebellum 

for MSA.  
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Performance of the DMI Indices in the Blind Test  

Table 3 illustrates the predictive accuracy of the DMI indices in the blind-test cohort. The image-

based classification resulted in 98.1% sensitivity, 90.0% specificity, 94.5% PPV, and 96.4% NPV for PD 

and also accurate for MSA (88.5% sensitivity, 99.2% specificity, 96.4% PPV, and 97.4% NPV) and PSP 

(84.5% sensitivity, 97.8% specificity, 89.1% PPV, and 97.0% NPV). For the 108 patients in the blind-test 

cohort with follow-up PET scans, the DMI indices had slightly better performance comparing follow-up 

to baseline (P=0.017).  

The probabilities among the DMI indices for subjects with follow-up imaging in the blind-test cohort 

are plotted in Fig. 4. The probabilities of MSA and PSP increased at follow-up imaging (MSA: P=0.028, 

PSP: P=0.002). The probabilities of IPD between at follow-up and baseline imaging were comparable 

(P=0.894), but the median and most of the IPD probabilities (38/66) increased. Nine cases presented 

relative significant lower probabilities of IPD at follow-up (over 0.1) compared with the baseline.  

Besides, differential diagnosis performance of using the DMI indices only and using the combination 

of the DMI indices with demographic and clinical features were compared, and no difference was found 

(P=0.999) (Supplemental Table 8) (14). Besides, DMI indices made predictions inconsistent with the 

clinical diagnosis in six cases obvious probability decrease during follow-up (Supplemental Table 9). 

Test on the External German Cohort  

The DMI indices achieved 94.1% sensitivity, 84.0% specificity, 78.0% PPV, and 95.9% NPV for the 

diagnosis of the IPD on the German cohort (Table 3). The diagnoses were also accurate for MSA (82.4% 

sensitivity, 99.9% specificity, 99.9% PPV, and 96.1% NPV) and PSP (82.1% sensitivity, 94.1% 

specificity, 91.4% PPV, and 87.3% NPV). Although the performance metrics were slightly lower than 
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those for the Chinese cohort, no significant difference has been observed in the performance of the 

diagnosis of IPD (P=0.14), MSA (P=0.25) and PSP (P=0.50). 

 

DISCUSSION  

An effective imaging-based tool may contribute to earlier and more precise diagnosis in parkinsonian 

conditions and may help with the development and monitoring of individualized disease-modifying 

treatments (15,16). This study confirms that deep learning can identify accurate imaging-based indices 

from 18F-FDG PET.  

Similar to pattern expression scores of PCA analysis (5), the DMI indices herein identified three 

probability scores from 18F-FDG PET for each individual and a prediction was generated by comparing 

these three probabilities. The conventional pattern related scores are derived from linear weightings of 

imaging intensities. In contrast, the DMI indices can reveal hyper-level inter-relations such as textures, 

which may better describe the complex heterogeneous pathogenesis of parkinsonian disorders. The 

extensive test in relatively large cohorts found that the DMI indices can achieve competitive or possibly 

better performance in the differential diagnosis of parkinsonism compared with previously reported 

studies (5).  

The probabilities among the DMI indices have low ambiguity and a dominant maximal probability 

is definable for resulting in a robust diagnosis prediction. Nevertheless, we also support confidence 

inspection to differentiate predictions with different confidence levels. The confidence thresholds can be 

customized (Supplemental Table 7). For a default setting according to the optimization of generalized 

Youden’s index, the confidence threshold for MSA was higher compared to IPD or PSP. In this study, the 

MSA patients were mixed with MSA-parkinsonian (MSA-P) and MSA-cerebellar (MSA-C) types and 
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have greater heterogeneity in metabolic pathological phenotype. Therefore, it could be posited that a 

higher confidence threshold is required to obtain a robust prediction.  

The DMI indices can be combined with demographic and clinical information as well as other 

indices, such as impairment of olfactory function (for IPD versus MSA) or skin biopsy-positivity for 

phospho-alpha-synuclein aggregates (17) (for IPD and MSA versus PSP), to comprehensively generate 

diagnostic classifications. In our study, employing the PET scans independently achieved comparable 

performance to the integration of demographic and clinical information into the DMI indices, which 

indicated the most discriminative information for the parkinsonism diagnosis was included in the PET 

scan modality and could be extracted by the proposed method into the DMI indices. Besides, the two-

stage design (Supplemental Fig. 3) (13,18,19) of our work allows the DMI indices to reduce the risk of 

erroneous predictions through excluding non-parkinsonian subjects in the control stage, which aims at 

further improving the robustness of diagnostic classifications.  

In general, the DMI indices developed from the Chinese HPPI database achieved comparable 

performance in a German cohort. Indeed, there were substantial differences between the two cohorts: in 

contrast to the Chinese cohorts, the German cohorts were acquired on different scanners. The imaging 

protocols (i.e. acquisition time, reconstruction method, tracer dose) and patient preparation (i.e. eye patch 

and noise-cancelling differences) (Supplemental Table 5) varied. Significantly different metabolic uptakes 

were observed in the cerebellum, midbrain and caudate between these two cohorts (Supplemental Fig. 2), 

where population-based differences (3,20) may exist. The domain difference between data can present an 

obstacle to the wider clinical translation of conventional methods. A prerequisite for spatial covariance 

analysis in the established population-based patterns for IPD, MSA, and PSP is to bridge the difference 

between various populations (5). In contrast to pattern analysis, the hierarchical feature representation of 

deep learning is more flexible and affords migration of domain differences during the learning phase (21). 
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Similar to previous studies (22), our test confirmed that deep learning can be robust to the discrepancies 

inherent in molecular imaging acquisitions. This finding suggests the DMI marker extracted using deep 

learning in this study may be more generalizable and better suited for clinical translation. 

Recently, concerns have been raised regarding the reproducibility or stability of deep learning 

methods: methods optimized in one cohort may have limited performance in other cohorts or in other 

applications (23). We subjected our DMI indices to a blind test as a means of independent in-depth 

validation (24). The performance of the DMI indices under conditions of a blind test was consistent with 

the cross-validation test. These results lead us to conclude that the DMI indices are reproducible. Another 

limitation of deep learning is the black-box nature of the derived model, which precludes the drawing of 

any links to the underlying pathophysiology. To address this concern, we employed saliency maps to 

understand the decision mechanism behind the neural networks. The saliency maps indicated that the DMI 

indices derived probabilities largely based on parkinsonism-related brain regions, which are consistent 

with the critical regions of IPD, MSA, and PSP-related covariance pattern (5,25). 

Dopaminergic imaging is critical for diagnosing parkinsonian disorders, although it has not been 

confirmed to be suitable for the reliable differential diagnosis. Most patients with parkinsonism in our 

study underwent contemporary dopaminergic imaging as 18F-FDG. Therefore, this study can be regarded 

as performed based on dopaminergic imaging. Whether 18F-FDG imaging and deep learning can be used 

to diagnose parkinsonian disorders with blinded dopaminergic imaging results is an interesting future 

direction to explore. 

One limitation of this study is that we did not employ MRI for partial volume correction and spatial 

normalization. Although MRI is generally included in the neurological work-up of these patients, many 

of them were scanned at external centers with a variety of protocols and the 3D images were not always 

retrievable. We conceded that the cortical thickness derived from MRI images might also assist the 
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differentiation of parkinsonism (26). The integration of these morphometries in any future study may 

further enhance the imaging-based indices. Besides, although performance on the training cohort, blind-

test cohort and Germany cohort, which have different data distributions (IPD:MSA:PSP), has indicated 

the DMI indices have a certain level of ability to handle the distribution-different problems, different 

distributions may still be a factor influencing performance on another future cohort. It is worthy to conduct 

multi-center studies to further validate our method. Meanwhile, we only evaluated one possible multi-

modality fusion method in this work. In the future, to further improve the diagnosis performance, other 

fusion methods such as gating-based attention-based late fusion will be evaluated.  

CONCLUSION  

We developed a 3D deep residual convolutional neural network to extract DMI indices for the 

automated differential diagnosis of parkinsonism. The indices were evaluated with the cross-validation 

experiment and blind tests on both Chinese and German cohorts, demonstrating that the proposed method 

was both robust and accurate, which may complement diagnoses made by expert clinicians.  
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KEY POINTS 

QUESTION: Can deep learning effectively extract indices from brain glucose metabolic imaging (18F-

FDG PET) to improve the differential diagnosis of Parkinson’s disease and atypical parkinsonian 

syndromes? 

PERTINENT FINDINGS: The developed deep metabolic imaging (DMI) indices prediction using deep 

learning provides an early and accurate method for differential diagnosis which may complement 

diagnoses made by expert clinicians. The trustworthy artificial intelligence (AI) development was 

achieved by training on a largest benchmark data of 18F-FDG PET, extensive testing on longitudinal data 

and independent external data with different ethnicity or examination protocols.  

IMPLICATIONS FOR PATIENT CARE: This developed DMI indices may assist early differential 

diagnosis of parkinsonism and the development of disease-modifying treatment strategies. 
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Figure 1. Study profile. A Chinese chohort (Huashan parkinsonian PET imaging dataset) and A Germany 

cohort were involved. IPD: idiopathic Parkinson's disease, MSA: multiple system atrophy, PSP: 

progressive supranuclear palsy, DMI: deep metabolic imaging, Clinically definite diagnoses: diagnoses 

by the clinical experts after return visit but without a formal clinical follow-up, Clinically confirmative 

diagnoses: diagnoses resulting from at least one formal clinical follow-up over one year after PET imaging.  
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Figure 2. The accuracy of the deep metabolic imaging (DMI) indices in the development phase in 

the training cohort and blind-test phase on both Chinese and German test cohorts. The results in the 

cross-validation were plotted using receiver operating characteristic curves. The results in the Chinese 

blind-test cohort were illustrated as single points, where Overall represents the results of all the tested 330 

patients. 108 patients in the blind test have follow-up scans and the performance of them at Baseline and 

Follow-up was plotted. The blind-test results in the German cohort (90 patients) are also included and 

denoted with the black rectangular for easy comparison.  
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Figure 3. 3D plot of the probabilities of idiopathic Parkinson’s disease (IPD), multiple system 

atrophy (MSA) and progressive supranuclear palsy (PSP) of the deep metabolic imaging (DMI) 

indices in the training cohort. (A) patients with short symptom duration (≤ 2 years), (B) patients with 

long symptom duration (> 2 years).  
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Figure 4. The comparison of the probabilities of idiopathic Parkinson’s disease (IPD), multiple 

system atrophy (MSA), and progressive supranuclear palsy (PSP) of the deep metabolic imaging 

(DMI) indices on the 108 patients of the blind-test cohort with repeated PET scans. The left column 

compares the probability of the DMI indices extracted from baseline and follow-up PET for individuals. 

The violin plots in the right column demonstrate the statistical distribution of the probabilities of the DMI 

indices. *: P ≤ 0.05, **: P ≤ 0.01, ns: no significance.  
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Graphical Abstract 
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Table 1. The demographic and clinical data.  

Data are shown as mean ± standard deviation. In German cohort, the associated numbers of subjects with these items are provieded 

together with the statistics information (subject number with certain item /total subject number).  

* Diagnosis information: Supplementary table 1 

**Detailed Hoehn and Yahr stage information: Supplementary table 2  

  Huashan parkinsonian PET imaging dataset (Chinese cohort) German Cohort 

 

 Pre-training Cohort 

Training Cohort Blind-test Cohort  

Overall 
Short Symptom Duration 

（ ≤ 2 years） 

Long Symptom Duration 

（ 2 years） 
Overall Baseline Follow-up  

Id
io

p
at

h
ic

 
P

ar
k
in

so
n
 

D
is

ea
se

*
 

Patient  number  241 299 136 163 211 66 66 34 

Sex (male/female)  154/87 166/133 73/63 93/70 130/81 43/23 43/23 21/13 (34/34) 

Age at PET (years) 50.0±15.5 60.2±8.5 59.1±9.0 61.0±8.0 60.0±7.6 60.0±7.9 62.1±7.9 72.9±9.5 (34/34) 

Symptom duration at PET (months)  / 45.3±46.0 13.0±5.9 72.3±47.4 39.0±41.3 26.0±24.1 53.4±24.2 44.5±32.9 (18/34) 

Hoehn and Yahr stage** / 2.2±1.0 1.7±0.6 2.7±1.0 1.9±0.9 1.6±0.7 1.9±0.6 1.6±0.8 (22/34) 

UPDRS III  / 27.0±14.3 18.9±8.9 33.8±14.5 22.8±12.1 19.6±9.1 24.2±10.1 12.0±3.6 (3/34) 

Clinical follow-up (months) / / / / 46.8±30.4 / 64.5±25.3 19.1±21.8 (14/34) 

M
u
lt

ip
le

 S
y
st

em
 A

tr
o
p

h
y
 

Patient  number (MSA-C/MSA-P) 79  150 (57/93)  90 (39/51) 60 (18/42) 61 (21/40) 22 (8/14) 22 (8/14) 17 (8/8/1) 

Sex (male/female) 42/37 78/72 47/43 31/29 32/29 14/8 14/8 10/7 (17/17) 

Age at PET (years) 57.5±10.6 57.8±8.0 56.5±8.1 59.6±7.4 58.5±6.3 58.3±7.4 60.3±7.3 61.3±8.3 (17/17) 

Symptom duration at PET (months) / 24.3±17.1 13.9±6.0 39.9±16.5 27.0±20.1 22.1±11.8 45.6±12.5 30.0±22.2 (17/17) 

Hoehn and Yahr stage**  / 3.1±0.8 3.0±0.8 3.5±0.7 2.9±0.8 2.6±0.6 3.4±0.8 2.4±1.1 (15/17) 

UPDRS III / 30.6±14.5 25.9±12.4 37.6±14.7 29.3±14.4 23.5±8.2 36.4±11.1 34.6±12.8 (11/17) 

Clinical follow-up (months) / / / / 30.7±18.2 / 41.7±16.4 22.6±22.4 (17/17) 

P
ro

g
re

ss
iv

e 
S

u
p

ra
n
u
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r 

P
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*
 

Patient  number 78 98 34 64 58 20 20 39 

Sex (male/female) 45/33 60/38 23/11 37/27 39/19 17/3 17/3 21/18 (39/39) 

Age at PET (years) 64.6±8.6 67.2±8.0 65.0±9.3 68.5±6.9 65.1±6.6 64.8±7.5 67.0±7.2 70.0±7.1 (39/39) 

Symptom duration at PET (months) / 35.0±20.7 15.3±5.4 45.5±18.0 34.1±22.7 32.4±22.0 58.8±22.8 22.4±15.7 (37/39) 

Hoehn and Yahr stage** / 3.2±0.8 2.9±0.6 3.4±0.8 3.0±0.8 2.7±1.0 3.6±0.8 2.6±1.1 (37/39) 

UPDRS III / 30.1±13.5 28.0±11.0 31.2±14.6 26.8±11.0 23.0±10.4 34.6±15.9 37.0±15.9 (20/39) 

Clinical follow-up (months) / / / / 25.1±15.7 / 37.5±12.9 22.2±13.8 (17/39) 
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Table 2. Accuracy of the deep metabolic imaging (DMI) indices in the cross-validation on the training cohort.  

  Overall 
Short Symptom Durations 

(≤ 2 years) 

Long Symptom Durations 

( 2 years) 

Idiopathic 

Parkinson 

Disease 

AUC 0·986 (0·977-0·996) 0·981 (0·965-0·997) 0·991 (0·981-1·000) 

Sensitivity 95·7% (92·7%-97·7%) 94·9% (89·7%-97·9%) 95·7% (91·4%-98·3%) 

Specificity 97·6% (94·8%-99·1%) 97·6% (93·1%-99·5%) 98·4% (94·3%-99·8%) 

PPV 97·9% (95·6%-98·9%) 97·7% (93·5%-99·1%) 98·7% (95·5%-99·5%) 

NPV 94·9% (91·5%-98·1%) 94·5% (89·1%-98·8%) 94·6% (89·2%-99·3%) 

Multiple 

System 

Atrophy 

AUC 0·997 (0·994-1·000) 0·996 (0·988-1·000) 0·998 (0·995-1·000) 

Sensitivity 97·3% (93·3%-99·3%) 100% (96·0%-100%) 98·3% (91·1%-100%) 

Specificity 99·5% (98·2%-99·9%) 98·2% (94·9%-99·6%) 99·6% (97·6%-100%) 

PPV 98·6% (95·3%-99·6%) 96·8% (91·0%-100%) 98·3% (91·3%-100%) 

NPV 99·0% (97·4%-99·9%) 100% (97·8%-100%) 99·6% (97·5%-100%) 

Progressive 

Supranuclear 

Palsy 

AUC 0·982 (0·965-0·998) 0·968 (0·925-1·000) 0·990 (0·980-1·000) 

Sensitivity 91·8% (84·5%-96·4%) 88·2% (72·5%-96·7%) 93·8% (84·8%-98·3%) 

Specificity 98·2% (96·5%-99·2%) 98·2% (95·5%-99·5%) 98·2% (95·5%-99·5%) 

PPV 91·8% (85·0%-96·4%) 88·2% (74·3%-96·7%) 93·7% (85·2%-98·3%) 

NPV 98·2% (96·4%-99·2%) 98·2% (95·1%-99·5%) 98·2% (95·3%-99·5%) 

AUC: area under thecurve, PPV: positive predictive value, NPV: negative predictive value. 
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Table 3. Accuracy of the deep metabolic imaging (DMI) indices on the blind-test cohort from Huashan parkinsonian PET 

imaging dataset (Chinese cohort) and German cohort.  

 
 

Huashan parkinsonian PET imaging dataset (Chinese cohort) German cohort 

 Overall Baseline Follow-up 

Idiopathic 

Parkinson 

Disease 

Sensitivity 98.1% 98.5% 95.5% 94.1% 

Specificity 90.0% 88.1% 97.6% 84.0% 

PPV 94.5% 92.9% 98.4% 78.0% 

NPV 96.4% 97.4% 93.2% 95.9% 

Multiple 

System 

Atrophy 

Sensitivity 88.5% 81.8% 95.4% 82.4% 

Specificity 99.2% 99.9% 98.8% 99.9% 

PPV 96.4% 99.9% 95.5% 99.9% 

NPV 97.4% 95.6% 98.8% 96.1% 

Progressive 

Supranuclear 

Palsy 

Sensitivity 84.5% 90.0% 95.0% 82.1% 

Specificity 97.8% 97.7% 96.6% 94.1% 

PPV 89.1% 90.0% 86.4% 91.4% 

NPV 97.0% 97.7% 98.8% 87.3% 

PPV: positive predictive value, NPV: negative predictive value 
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Detailed information of the Chinese Cohort 

In the Chinese cohort (Huashan parkinsonian PET imaging dataset), a total of 1275 parkinsonian patients were included. These 

patients were sorted into pre-training cohort, training cohort, and blind-test cohort according to whether their diagnosis was 

clinically definite and whether follow up clinical data (at least one year following PET imaging) were available. Pre-training 

cohort (241 IPD, 79 MSA, and 78 PSP): the patients with a clinically possible diagnosis of IPD, MSA, or PSP were used for 

preliminary training the PDD-Net. Considering that the purpose of this study was to obtain deep metabolic imaging (DMI) 

indices and make differential diagnoses of IPD, MSA, and PSP, and cognizant that the diagnostic standards of MSA and PSP 

have clear provisions on the age of onset, all the patients with an onset age younger than 40 years old were sorted into the pre-

training cohort. In addition, the patients having definite clinical diagnosis but without detailed chart records were also grouped 

into the pre-training cohort. Training cohort (299 IPD, 150 MSA, and 98 PSP): the patients with a clinically definite diagnosis 

after return visit but without a formal clinical follow-up were used for fine-tuning and cross-validation of the PDD-Net to 

extract DMI indices. We distinguished between two subgroups of patients with short (≤ 2 years) and long (> 2 years) symptom 

duration for the test. Blind-test cohort (211 IPD, 61 MSA, and 58 PSP): the patients with a clinically confirmative diagnosis 

resulting from at least one formal clinical follow-up over one year after PET imaging were used for independently testing the 

DMI indices. The diagnosis of the individuals in the blind-test cohort was not disclosed to the algorithm developers who were 

blinded to clinical details. In the blind-test cohort, a subgroup of 108 patients had another PET scans at the time of follow-up 

in addition to the one at the time of first diagnosis (baseline). In this work, we denote FDG PET images at baseline of the all 

330 patients on the blind-test cohort as “overall”, FDG PET images at baseline of the 108 patients with repeated PET scans as 

“baseline”, and FDG PET images at follow-up of the 108 patients with repeated PET scans as “follow-up” during analyzing 

the blind-test cohort. 

The clinical diagnosis of the patients in this study was according to the most recently published criteria (1-3).The diagnoses 

for idiopathic Parkinson’s disease (IPD) and progressive supranuclear palsy (PSP) made using the older criteria (4,5) in the 

training cohort and blind-test cohort were reconfirmed according to chart records or follow up using the latest criteria (1,2). 

The detailed information of the diagnosis according to different criteria are listed in Supplemental Table 1. 

Supplemental Table 1 The detailed information of the clinical diagnosis according to different versions of diagnostic criteria. 

 Clinical Criteria Pre-training Cohort Training Cohort Blind-test Cohort 

Idiopathic Parkinson 

Disease 

New (2,5) 112 185 77 

Old (5) 129 114 134 

Progressive 

Supranuclear Palsy* 

New(1) (4)  36 66 29 

Old (4) 42 32 29 

*PSP consists of 165 PSP-Richardson syndrome (PSP-RS) and 69 other subtypes 

Note: All patients diagnosed with old criteria were reconfirmed with the new diagnosis criteria. 
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Supplemental Table 2 The frequency distributions of Hoehn and Yahr stage 

 
Training Cohort1 Blind-test Cohort2 

Overall 
Short Symptom 

Duration 
Long Symptom Duration Overall Baseline Follow-up 

Id
io

pa
th

ic
 

Pa
rk

in
so

n 
D

is
ea

se
 HY = 1 23.4% 36.0% 12.9% 37.3% 52.2% 23.9% 

HY = 2 46.2% 59.6% 35.0% 42.5% 34.3% 58.2% 

HY = 3 18.7% 4.4% 30.7% 14.2% 11.9% 17.9% 

HY = 4 9.4% 0.0% 17.2% 5.2% 1.5% 0.0% 

HY = 5 2.3% 0.0% 4.3% 0.9% 0.0% 0.0% 

M
ul

tip
le

 S
ys

te
m

 

A
tr

op
hy

 

HY = 1 2.0% 3.3% 0.0% 4.9% 4.6% 0.0% 

HY = 2 14.0% 22.2% 1.7% 23.0% 31.8% 4.6% 

HY = 3 58.0% 60.0% 55.0% 54.1% 63.6% 63.6% 

HY = 4 20.0% 12.2% 31.7% 14.8% 0.0% 18.2% 

HY = 5 6.0% 2.2% 11.7% 3.3% 0.0% 13.6% 

Pr
og

re
ss

iv
e 

Su
pr

an
uc

le
ar

 P
al

sy
 

HY = 1 2.0% 2.9% 1.6% 3.5% 10.5% 0.0% 

HY = 2 7.1% 14.7% 3.1% 19.3% 31.6% 0.0% 

HY = 3 66.3% 73.5% 62.5% 57.9% 42.1% 63.2% 

HY = 4 17.4% 8.8% 21.9% 14.0% 10.5% 15.8% 

HY = 5 7.1% 0.0% 10.9% 5.3% 5.3% 21.1% 

1 The training cohort includes 547 patents with clinically definite diagnosis according to latest diagnostic criteria for the fine-tuning of the pre-trained deep neural 

network and the evaluation (cross-validation) during the development of the deep metabolic imaging (DMI) indices. Short symptom duration represents patients 

with symptom duration ≤ 2 years and long symptom duration means patients with symptom duration > 2 years 

2 The blind-test cohort includes 330 patients with clinically confirmative diagnosis after follow-up for independent and in-depth test of the developed deep metabolic 

imaging (DMI) indices. Among them, 108 patients had PET scans both at the time of first diagnosis (Baseline) and also at the time of follow up (Follow-up). 

During the development, the diagnosis of a patient is modified according to latest follow-up trigged out by the controversial diagnostic recommendation (PSP) 

compared to the diagnosis at the previous follow-up (IPD). 
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Excluding of non-parkinsonian patients  

The developed deep metabolic imaging (DMI) indices includes the option to pre-investigate the input PET images to avoid 

erroneous inclusion of non-parkinsonism subjects when calculating DMI indices. There was a control stage to exclude non-

parkinsonism patients before the main classification stage. In this stage, a deep neural network was employed for the pre-

investigation. Patients with either IPD, MSA, or PSP in pre-training cohort and training cohort were used as “positive” samples 

to train the network. A control cohort with 643 patients and 220 healthy subjects was collected (The detailed information of 

the control cohort is given in Supplemental Table 3), of whom 813 were randomly selected as “negative” samples to train the 

network and the remaining 50 patients were for testing. The performance of the control stage was then tested on 130 unseen 

patients (parkinsonian subjects: 80, non-parkinsonian subjects (including healthy people): 50). The network achieved 

ROCAUC of 0.985, sensitivity of 95.0%, specificity of 98.0%, PPV of 98.7%, and NPV of 92.5% for the exclusion of non-

parkinsonian subjects (Supplemental Table 4).  
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Supplemental Table 3 Control cohort to prevent the inappropriate computation of the DMI indices. In this stage, we trained a 

network to exclude non-parkinsonian subjects. Patients with IPD/MSA/PSP in pre-training cohort and training cohort were 

used as “positive samples” to train the network. Patients and healthy subjects in this table were used as “negative samples” to 

train the network. 

Disease Name Number of Patients 

Alzheimer's disease (AD) 59 

Posterior Cortical Atrophy 26 

Semantic Dementia 25 

Frontotemporal Dementia 19 

Dementia of Unknown Origin 26 

Mild Cognitive Impairment 7 

Anorexia 44 

Anxiety 12 

Depression 30 

Obsessive Compulsive Disorder 25 

Drug Addiction 3 

Cerebral Hemorrhage 7 

Cerebral Infarction 8 

Cerebral Small Vessel Disease 3 

Encephalitis 175 

Possible Creutzfeldt-Jakob Disease 22 

Drug-Induced Parkinsonism 3 

Dopa-Responsive Dystonia 3 

Dystonia 2 

Normal Pressure Hydrocephalus 2 

Cerebral Palsy 32 

Epilepsy 81 

Motor Neuron Disease 3 

Klein-Levin Syndrom 2 

Narcolepsy 4 

Healthy Persons 220 
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Supplemental Figure 1 the ROC curve in exclusion of non-parkinsonian patients 

 

Supplemental Table 4 The performance of the proposed method in exclusion of non-parkinsonian patients based on FDG 

PET. 

 Other MSA/IPD/PSP 

Sensitivity 98.0% 95.0% 

Specificity 95.0% 98.0% 

PPV 92.5% 98.7% 

NPV 98.7% 92.5% 
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Data difference between Chinese and German cohort 

PET/CT protocol difference between Chinese and German cohort 

Chinese Cohort 

After attenuation correction performed using low-dose CT, the emission scan was acquired at 60-minute post injection of 

approximately 185 MBq 18F-FDG and lasted 10 minutes (Siemens Biograph 64 HD PET/CT, Siemens, Germany). PET images 

were reconstructed by using the ordered subset expectation maximization method following corrections for scatter, dead time, 

and random coincidence.  

German Cohort 

(1) Siemens ECAT EXACT HR+ and GE Discovery 690 

FDG-PET images were acquired on a GE Discovery 690 PET/CT scanner or a Siemens ECAT EXACT HR+ PET scanner. 

All patients had fasted for at least six hours and had a maximum plasma glucose level of 150 mg/dl at time of scanning. A 

single intravenous dose of 140 ± 7 MBq FDG was administered while the patients rested in a room with dimmed light and low 

noise level, where they remained undisturbed for 20 minutes. After positioning in the scanner, a series of three static emission 

frames of five minutes each was acquired from 30 to 45 min p.i. on the GE Discovery 690 PET/CT, or from 30 to 60 min p.i. 

on the Siemens ECAT EXACT HR+ tomograph. A low-dose CT scan or a transmission scan with external 68Ge-source 

performed just prior to the static acquisition was used for attenuation correction. PET data were reconstructed iteratively (GE 

Discovery 690 PET/CT) or with filtered-back-projection (Siemens ECAT EXACT HR+ PET). After correction for movement 

between frames, the static scans were averaged. 

(2) Siemens Biograph 64  

The PET data were acquired on a Siemens Biograph True point 64 PET/CT (Siemens, Erlangen, Germany). The dynamic 

brain PET data were acquired in 3-dimensional list-mode over 20min and reconstructed into a 336x336x109 matrix (voxel size: 

1.02×1.02×2.03 mm3) using the built-in ordered subset expectation maximization (OSEM) algorithm with 4 iterations, 21 

subsets and a 5mm Gaussian filter. A low dose CT served for attenuation correction. 
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Supplemental Table 5 The comparison of the PET/CT protocols between Chinese and German cohorts 

 Chinese cohort German cohort 

Siemens Biograph 

64 

Siemens ECAT 

Exact HR+ 
GE Discovery 690 

Siemens Biograph 

64 

Sensitivity 4.5 kcps/MBq 6.65 kcps/MBq 7.5 cps/kBq 4.5 kcps/MBq 

Transverse 

Resolution 
4.2± 0.3 mm 4.39 mm 4.70 4.2± 0.3 mm 

Axial 

Resolution 
4.5± 0.3 mm 5.10 mm 5.06 4.5± 0.3 mm 

Peak NEC 93 kcps 37 kcps 139.1 kcps 93 kcps 

Scatter Fraction 32% 46.9% 37% 32% 

Injection dose (MBq) ~185 140 ± 7 140 ± 7 / 

Acquisition time p. i. 

(min) 
60 95 30 30 

Imaging duration 

(min) 
10 20 15 20 

Reconstruction 

method 
OSEM IFBP Iterative OSEM 

Attenuation correction CT 68 Ge transmission CT CT 

Reconstructed voxel 

size 
2.03×2.03×1.5 mm3 1.4×1.4×2.4 mm3 / 

1.02×1.02×2.03 

mm3 

Smooth Gaussian 10mm / / Gaussian 5mm 

Eye mask yes / / / 

Fasting >6 hour >6 hour >6 hour >6 hour 

Blood glucose level <150 mg/dl <150 mg/dl <150 mg/dl <150 mg/dl 
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Uptake difference between Chinese cohort and German cohort 

 
Supplemental Figure 2 The comparisons of relative uptake between Chinese cohort and German cohort of regions including 

Putamen, Caudate, Midbrain, Cerebellum (* indicates P ≤ 0.05, ** indicates P ≤ 0.01, *** indicates P ≤ 0.001, ****: P<0.0001). 
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Test of Global Mean Normalization 

To test the robustness of the deep metabolic imaging (DMI) indices, we tested the performance of the DMI indices extracted 

from FDG PET scans after the Global Mean Normalization. We removed all normalization layers in the Parkinson Differential 

Diagnosis Network (PDD-Net) to keep the intensity information of the original PET scans. 

Different from the Z-score normalization which is defined as: 

𝐽𝐽𝑧𝑧(𝑥𝑥) = (𝐼𝐼(𝑥𝑥) − 𝜇𝜇)/𝜎𝜎, 

where Jz(x) represents the Z-score normalized PET image, 𝑥𝑥 is a voxel, 𝜇𝜇 is the average and 𝜎𝜎 is the standard deviation of the 

PET uptake computed within.  

The global mean normalization is defined as: 

𝐽𝐽𝐺𝐺(𝑥𝑥) = 𝐼𝐼(𝑥𝑥)/𝑢𝑢𝐺𝐺, 

where 𝐽𝐽𝐺𝐺(𝑥𝑥) represents the global-mean normalized PET image, 𝑥𝑥 is a voxel, and 𝑢𝑢𝐺𝐺  is the average of the PET uptake computed 

in the whole brain. 

As shown in Supplemental Table 6, we found the DMI indices obtained similar performance between using two different 

normalization methods (ROCAUC P-value: 0.577 for IPD, 0.589 for MSA, and 0.617 for PSP). Generally, Z-score 

normalization resulted in slightly better ROCAUC than global mean normalization for MSA (0.001, 0.001, and 0.003 higher 

for overall, short symptom durations and long symptom durations respectively) but slightly lower ROCAUC for IPD (0.003 

and 0.008 lower for overall and short symptom durations). For PSP, Z-score obtained slightly lower ROCAUC on overall 

(0.005 lower) and short symptom durations (0.020 lower) but slightly higher ROCAUC on long symptom durations (0.005 

higher). 

The individual Z-score normalization resulted in slightly high accuracy for the DMI indices. However, the choice of other 

intensity normalization methodologies may influence the data analysis and result in improved performance in the deep learning 

methods outlined herein, which future studies should consider.  
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Supplemental Table 6 Diagnostic accuracy of the DMI indices for parkinsonian disorders utilizing the Global Mean 

Normalization in data pre-processing step (Cross-validation, Training Cohort).  

  Overall 
Short Symptom Durations (≤ 2 

years) 

Long Symptom Durations (> 2 

years) 

Idiopathic 

Parkinson Disease 

 

ROCAUC 0.989 (0.983-0.996) 0.989 (0.979-0.999) 0.991 (0.983-0.998) 

Sensitivity 95.7% (92.7%-97.7%) 97.1% (92.6%-99.2%) 95.7% (91.4%-98.3%) 

Specificity 94.8% (91.2%-97.2%) 95.2% (89.8%-98.2%) 94.4% (88.7%-97.7%) 

PPV 95.7% (92.7%-97.7%) 95.7% (90.8%-98.8%) 95.7% (91.3%-98.3%) 

NPV 94.8% (91.2%-97.2%) 96.7% (91.8%-98.8%) 94.4% (88.8%-97.7%) 

Multiple System 

Atrophy 

 

ROCAUC 0.996 (0.991-1.000) 0.995 (0.988-1.000) 0.995 (0.988-1.000) 

Sensitivity 97.3% (93.3%-99.3%) 97.8% (92.2%-99.7%) 98.3% (91.1%-100%) 

Specificity 99.0% (97.4%-99.7%) 99.4% (96.8%-100%) 98.7% (96.2%-99.7%) 

PPV 97.3% (93.4%-99.3%) 98.9% (94.0%-100%) 95.2% (86.9%-99.9%) 

NPV 99.0% (97.4%-99.7%) 98.8% (95.8%-100%) 99.6% (97.5%-99.9%) 

Progressive 

Supranuclear 

Palsy 

ROCAUC 0.987 (0.978-0.995) 0.988 (0.975-1.000) 0.985 (0.974-0.997) 

Sensitivity 87.8% (79.6%-93.5%) 91.2% (76.3%-98.1%) 87.5% (79.2%-95.2%) 

Specificity 98.0% (96.2%-99.1%) 97.8% (94.9%-99.3%) 97.8% (97.0%-99.9%) 

PPV 90.5% (83.3%-95.1%) 86.1% (72.4%-96.9%) 91.8% (84.1%-98.3%) 

NPV 97.3% (95.2%-98.8%) 98.7% (95.8%-99.6%) 96.5% (93.9%-98.7%) 

ROCAUC: the area under the receiver operating characteristic curve, PPV: positive predictive value, NPV: negative 

predictive value. 
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The developed deep learning method. 

The deep learning method contains two PDD-Nets. The PDD-Net-1 sought to exclude patients without parkinsonism. The 

PDD-Net-2 performed computation of deep metabolic imaging (DMI) indices and classification of IPD, MSA, or PSP. Both 

PDD-Net-1 and PDD-Net-2 are based on a 3D residual convolutional neural network (Supplemental Fig. 3). 

 

Supplemental Figure 3: A sketch of the developed deep learning methods, which has two stages i.e., control stage and 

classification stage. In the control stage, The Parkinson Differential Neural Network-1(PDD-Net-1) works to exclude non-

parkinsonian patients. In the classification stage, the Parkinson Differential Neural Network-2 (PDD-Net-2) extracts the deep 

metabolic imaging (DMI) indices to classify idiopathic Parkinson’s disease (IPD), multiple system atrophy (MSA), and 

progressive supranuclear palsy (PSP). Our network used the instance normalization in the architecture. 

The employed deep neural network, i.e., Parkinson Differential Diagnosis Network (PDD-Net) comprised a down-sampling 

path including three repeated encoder stacks, a global average pooling and a fully connected layer with softmax activation. In 

each encoder stack, there were a residual module and a 3 × 3 × 3 convolutional layers with stride 2 for down-sampling the 

feature maps. Each residual module included two 3 × 3 × 3 convolutional layers and one dropout layer. The residual 

connections were employed for simplifying the optimization of the network and alleviating the vanishing gradient problem (6). 

We employed leaky rectified linear units (ReLU) as the activation function following the convolution layers and utilized 

categorical cross-entropy loss to train the network.  

We implemented the network with the Keras library. Adam optimizer was used during training with an initial learning rate 

𝑙𝑙𝑟𝑟𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = 10−4. The learning rate was reduced by a factor of 2 once learning stagnates. To regularize the network, we utilized 

the early stopping strategy with the patience of 10, which is a method employed to detect the convergence of training thereby 

avoiding overfitting. We implemented the full-gradient saliency map method by referring the library in (7) based on Pytorch. 

The validation of the deep learning method was performed in two ways, using six-fold cross-validation in the training cohort 

and conducting an independent test in the blind-test cohort. As mentioned above, we first pre-trained the Parkinson Differential 

Diagnosis Network (PDD-Net) on 397 patients (the pre-training cohort). Then, we further trained the network and conducted 
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six-fold cross-validation in the training cohort. Finally, we utilized the blind-test cohort of the dataset to further evaluate the 

effectiveness of our method. In this blind-test stage, we employed a model ensemble procedure (8) to allow all six trained 

models in the cross-validation phase to jointly contribute to the differential diagnosis of parkinsonism. The obtained deep 

metabolic imaging (DMI) indices were the average DMI indices of six obtained models. The ground-truth labels of the samples 

in blind-test cohort were remained unseen for the algorithm developers. The obtained diagnosis classifications and related DMI 

indices of the obtained network was sent to our clinical co-authors (nuclear medicine physician) for independent evaluation. 

These clinical co-authors did not have access to or played a role in developing the algorithm.  

The ensemble strategy can be further summarized as follows: 

(1) Obtaining six trained model from cross-validation stages. 

(2) These six models are utilized to directly predict the possibilities of IPD/MSA/PSP for the subject on blind-test cohort. 

(3) We calculate the average prediction possibilities of the six models as follows: 

𝑃𝑃𝐸𝐸[𝐼𝐼𝐼𝐼𝐼𝐼,𝑀𝑀𝑀𝑀𝑀𝑀,𝑃𝑃𝑃𝑃𝑃𝑃] = 1
6
∑ 𝑃𝑃𝑖𝑖[𝐼𝐼𝐼𝐼𝐼𝐼,𝑀𝑀𝑀𝑀𝑀𝑀,𝑃𝑃𝑃𝑃𝑃𝑃]6
𝑖𝑖=1 , 

Where 𝑃𝑃𝐸𝐸[𝐼𝐼𝐼𝐼𝐼𝐼,𝑀𝑀𝑀𝑀𝑀𝑀,𝑃𝑃𝑃𝑃𝑃𝑃] is the ensembled possibilities and 𝑃𝑃𝑖𝑖[𝐼𝐼𝐼𝐼𝐼𝐼,𝑀𝑀𝑀𝑀𝑀𝑀,𝑃𝑃𝑃𝑃𝑃𝑃] is ith prediction possibilities from 

the ith model. 

(4) Based on 𝑃𝑃𝐸𝐸  and we referred the cut-off points in the cross-validation to determine the prediction diagnoses.  

(5) All prediction diagnoses were submitted to our clinical parameters for independently evaluation. 
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Confidence inspection 

The prediction according to the deep metabolic imaging (DMI) indices is generally derived based on the maximal probability 

of the three probabilities of idiopathic Parkinson’s disease (IPD), multiple system atrophy (MSA), and progressive supranuclear 

palsy (PSP). An option to warn the uncertain predictions is also provided if the maximal probability is below certain customized 

threshold. A default set of confidence thresholds (IPD: 0.51, MSA: 0.80, PSP: 0.56) were derived based on the generalized 

Youden’s index in the cross-validation stage. This set of optimal cut-off points utilized in this study were determined in the 

cross-validation stage and resulted in warning of eight predictions (IPD: 0, MSA: 6, PSP: 2) below the thresholds in the blind 

test, which were flagged as being uncertain cases. The users can alternatively customize the confidence thresholds. A set of 

more strict confidence thresholds of 0.8 for IPD, MSA, and PSP were tested. With this set of thresholds, more patients were 

warned (29/330 vs 8/330) as uncertain. If we only consider the confident predictions in the summary of accuracies, the statistics 

are shown in the following Supplemental table 7.  

Supplemental Table 7 Diagnosis accuracy of the DMI indices in only confident predictions for parkinsonian disorders 

utilizing confidence threshold of 0.8 for IPD, MSA, and PSP (blind test) 

  Overall1 Baseline2 Follow-up3 

Idiopathic Parkinson 

Disease 

Sensitivity 91.4% 87.8% 86.4% 

Specificity 94.1% 95.2% 99.9% 

PPV 96.5% 96.6% 99.9% 

NPV 86.2% 83.3% 82.4% 

Multiple System Atrophy 

Sensitivity 78.7% 77.3% 95.5% 

Specificity 99.3% 99.9% 99.9% 

PPV 96.0% 99.9% 99.9% 

NPV 95.4% 94.5% 98.9% 

Progressive Supranuclear 

Palsy 

Sensitivity 81.0% 80.0% 95.0% 

Specificity 98.5% 98.9% 97.7% 

PPV 92.2% 94.1% 90.5% 

NPV 96.0% 95.6% 98.9% 

1 The statistics of Overall summarizes the accuracy of all the 330 patients of the blind-test cohort based on the DMI indices 

extracted from the FDG PET imaging at baseline diagnosis.  

2 The statistics of Baseline summarizes the accuracy of 108 patients with repeated PET scans based on the DMI indices extracted 

from the baseline FDG PET imaging. 

3 The statistics of Follow-up summarizes the accuracy of 108 patients with repeated PET scans based on the DMI indices 

extracted from the follow-up FDG PET imaging. 

PPV and NPV represent positive predictive value and negative predictive value. 
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Performance of the combining demographic and clinical features with deep metabolic imaging 

To evaluate the performance of leveraging multi-modality data by combining the DMI indices with demographic and clinical 

features, a decision tree-based classifier, Extreme Gradient Boosting (XGBoost) (9), was trained to combine the DMI indices 

with demographic information and clinical data (age, gender, symptom duration, unified Parkinson's disease rating scale‐III 

(UPDRS-III), Hoehn and Yahr stage) to obtain combined diagnostic classifications.  

Compared to the prediction based on the DMI indices only, the combination of the DMI indices with demographic and 

clinical features had almost the same accuracy in the blind-test cohort including overall 330 subjects (P=0.999). Similarly, for 

the 108 patients in the blind-test cohort who had follow-up imaging available, there was almost no performance difference 

between the prediction of DMI indices only and the combination at baseline (P=0.999) or at the follow-up (P=0.735) (Details 

are in supplement 8). At follow-up, the sensitivity, PPV, and NPV increased for IPD (95.5% to 96.9%, 98.4% to 98.5%, 93.2% 

to 95.3% respectively) with the specificity remaining the same (97.6%) after the combination. For MSA, the sensitivity, 

specificity, PPV, and NPV all slightly increased (95.4% to 95.5%, 98.8% to 99.9%, 95.5% to 99.9%, 98.8% to 98.9% 

respectively) after the combination, but the metrics for PSP had no change. Overall, the performance at the follow-up did not 

change significantly (P=0.735) comparing the combination with using the DMI indices only.  
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Supplemental Table 8: combining demographic and clinical features with deep metabolic imaging: Accuracy of the 

differentiation of the parkinsonian disorders based on the deep metabolic imaging (DMI) indices and clinical information (age, 

gender, symptom duration, UPDRS III, Hoehn and Yahr stage) in the blind-test cohort. (“Multi” denotes multi-modality 

representing combing demographic and clinical features with deep metabolic imaging, and “single” represents single modality 

meaning using deep metabolic imaging only involved here for easy comparison.) 

  Overall Baseline Follow-up 

  Multi Single Multi Single Multi Single 

Idiopathic 

Parkinson 

Disease 

Sensitivity 98.1% 98·1% 98.5% 98·5% 96.9% 95·5% 

Specificity 90.0% 90·0% 88.1% 88·1% 97.6% 97·6% 

PPV 94.5% 94·5% 92.9% 92·9% 98.5% 98·4% 

NPV 96.3% 96·4% 97.4% 97·4% 95.3% 93·2% 

Multiple System 

Atrophy 

Sensitivity 86.9% 88·5% 81.8% 81·8% 95.5% 95·4% 

Specificity 99.2% 99·2% 99.9% 99·9% 99.9% 98·8% 

PPV 96.4% 96·4% 99.9% 99·9% 99.9% 95·5% 

NPV 97.1% 97·4% 95.6% 95·6% 98.9% 98·8% 

Progressive 

Supranuclear 

Palsy 

Sensitivity 86.2% 84·5% 89.9% 90·0% 95.0% 95·0% 

Specificity 97.8% 97·8% 97.7% 97·7% 96.6% 96·6% 

PPV 89.3% 89·1% 90.1% 90·0% 86.4% 86·4% 

NPV 97.1% 97·0% 97.7% 97·7% 98.8% 98·8% 

1 The statistics of Overall summarizes the accuracy of all the 330 patients of the blind-test cohort based on the DMI indices 

extracted from the FDG PET imaging at baseline diagnosis.  

2 The statistics of Baseline summarizes the accuracy of 108 patients with repeated PET scans based on the DMI indices extracted 

from the baseline FDG PET imaging. 

3 The statistics of Follow-up summarizes the accuracy of 108 patients with repeated PET scans based on the DMI indices 

extracted from the follow-up FDG PET imaging. 

PPV and NPV represent positive predictive value and negative predictive value. 
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Visualization of the deep metabolic imaging indices 

We generated the saliency maps of input PET images using the full-gradient method (7) to assist the interpretation of the 

DMI indices. The saliency maps assign importance scores to both the input features and individual neurons in a network, which 

reflects the contribution of groups of pixels to the DMI probabilities. The full-gradient saliency map method (7) utilized in this 

work considers both the input importance indicating the contribution of individual input voxels and neuron importance 

reflecting the contribution of groups of voxels with specific structural information, which is sharper and more tightly confined 

to object regions compared to other existing methods. Thus, the full-gradient saliency map method mitigates against known 

issues with inaccuracy in location and provided a preliminary explanation of the learned model. 

It should be noted that, due to the constraint that the sum of probability of IPD, MSA, and PSP should be equal to one, the 

saliency maps of IPD, MSA, and PSP are correlated, i.e., one factor leading to the increase of the IPD probability will result in 

the decrease of the probability of MSA and PSP simultaneously.  

Supplemental Fig. 4 demonstrates average saliency maps (fused with template MRI) of patients with IPD, MSA, or PSP 

in the training cohort. Regions with relatively higher contribution to the DMI indices were putamen and midbrain for IPD, 

MSA, and PSP as well as cerebellum for MSA.  

In order to interpret the results of the saliency map, we conducted 6 phantom studies. These phantom studies manipulate of 

the activities of the PET images of a set of 180 randomly selected patients of three categories, IPD (n=60), MSA (n=60), and 

PSP (n=60) from the training cohort. In each phantom study, we randomly selected a region on the PET scans (6*6*6 voxels), 

and then we artificially increased or decreased activities by 50% within this region of PET scans for patients in a category and 

kept PET scans of other two categories unchanged. For instance, in phantom study 1, we artificially increased activities of a 

selected region on PET scans in the IPD category and kept MSA and PSP categories the same as the original imaging data. 

Then we train the deep neural network on the artificially modified experiment datasets and calculated the saliency maps. In 

phantom study 2, we only decreased activities of the selected region in the IPD category and calculated the saliency maps. 

Similar procedures were employed in the computation of the saliency maps for MSA in phantom studies 3 and 4 and PSP in 

phantom studies 5 and 6. By manipulating the activities in each phantom study, the artificial regions with increased/decreased 

activities in one category were the most salient difference regions compared to the other two unchanged categories. The results 

are illustrated in the Supplemental Fig. 5, where we found that the saliency map recognized the selected regions with artificial 

characteristic activity-increase/-decrease as salient regions, which indicated the effectiveness and accuracy of the saliency map 

method. 
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Supplemental Figure 4. Visualization of average saliency maps of patients with idiopathic Parkinson’s disease (IPD), multiple 

system atrophy (MSA) and progressive supranuclear palsy (PSP) in the training cohort showing characteristic regions 

contributing to the deep metabolic imaging (DMI) indices. The colour corresponds to the importance score indicating the 

contribution of a region for the generated the deep metabolic imaging (DMI) indices. The colour directions (yellow and red vs 

cyan and blue) represent different influences on the DMI indices (Increase and Decrease the probability in the DMI indices). 

The arrows pointed to the most salient brain regions including 1: Cerebellum, 2: Midbrain, 3: Putamen, 4: Thalamus. 
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Supplemental Figure 5 Interpretation of saliency map using on artificially designed experiment datasets. From left to right, 

the first column showed the artificially selected regions for activity manipulation. The region to increase the activity is marked 

as bright and the region to decrease the activity is marked as dark. The remaining columns showed the average saliency map 

of idiopathic Parkinson’s disease (IPD), multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) in phantom 

studies.   
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Supplemental Figure 6 Visualization of the variance of saliency maps of the deep metabolic imaging indices for patients with 

idiopathic Parkinson’s disease (IPD), multiple system atrophy (MSA), and progressive supranuclear palsy (PSP) in the training 

cohort. 

The variance of saliency maps reflects the difference of the saliency maps at each voxel of patients within IPD, MSA, and 

PSP groups. The color corresponds to the variance scores. From this variance map, we can find that those regions with high 

variance locate at parkinsonism-related regions such as midbrain, putamen, and cerebellum which are in consist with salient 

regions in average saliency maps. 

  



20 
 

 

Cases of diagnostic classifications of the DMI indices inconsistent with the clinical diagnosis 

In contrast to the majority of cases in Fig. 4, there existed six cases where the DMI indices made predictions inconsistent 

with the clinical diagnosis and six cases with obvious probability decrease during follow-up (Supplement 9). Neurologists, who 

remained blind to the DMI indices predictions, were invited by nuclear medicine physicians to follow up the above-mentioned 

twelve patients along with the same number of randomly selected consistent samples. In one patient, at the post-AI follow-up, 

the diagnosis was updated from IPD to PSP. The DMI indices and neurologists both diagnosed the patient with IPD at baseline, 

but the DMI indices correctly diagnosed this patient as PSP at the first follow-up time. The DMI classification and the clinical 

diagnosis at different time point are listed in Supplemental Table 9.  
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Supplemental Table 9 The diagnostic classifications of the deep metabolic imaging (DMI) indices and the clinical diagnosis at different time point of the cases 

where DMI classification were inconsistent with the clinical diagnoses and cases with significantly decreased IPD probability over 0.1. 

Patient Order 

Baseline Time (initial scan, blind-test cohort) Follow-up Time (repeated scan, blind-test cohort) Post AI Follow-up 

DMI Diagnostic Classifications 
1 

Clinically Definite 

Diagnosis 
DMI Diagnostic Classifications 1 

Clinically 

confirmative 

Diagnosis 

Follow-up 

Time (month) 

Clinically 

confirmative 

Diagnosis 

Follow-up 

Time (month) 

In
co

ns
is

te
nt

 C
as

es
 

1* IPD (0.83, 0.08, 0.09) IPD PSP (0.02, 0.02, 0.95) IPD 24 PSP 66 

2* IPD (0.61, 0.13, 0.26) IPD PSP (0.09, 0.19, 0.72) IPD 60 IPD 115 

3* IPD (0.61, 0.35, 0.04) IPD MSA (0.25, 0.71, 0.04) IPD 12 IPD 74 

4 PSP (0.02, 0.01, 0.97) IPD PSP (0.03, 0.02, 0.96) IPD 36 IPD 84 

5 PSP (0.15, 0.09, 0.76) MSA-P PSP (0.04, 0.09, 0.88) MSA-P 25 MSA-P 61 

6 IPD (0.96, 0.02, 0.03) PSP IPD (0.79, 0.03, 0.18) PSP 24 PSP 51 

IP
D

 P
ro

ba
bi

lit
y 

D
ec

re
as

ed
 C

as
ed

 

1 IPD (0.95, 0.02, 0.03) IPD IPD (0.54, 0.03, 0.43) IPD 25 IPD 70 

2 IPD (0.97, 0.02, 0.02) IPD IPD (0.61, 0.35, 0.04) IPD 24 IPD 52 

3 IPD (0.97, 0.02, 0.02) IPD IPD (0.67, 0.29, 0.03) IPD 26 IPD 45 

4 IPD (0.87, 0.02, 0.11) IPD IPD (0.60, 0.03, 0.37) IPD 12 IPD 96 

5 IPD (0.76, 0.03, 0.21) IPD IPD (0.55, 0.04, 0.41) IPD 36 IPD 95 

6 IPD (0.83, 0.10, 0.08) IPD IPD (0.64, 0.04, 0.32) IPD 23 IPD 65 

1DMI Diagnostic Classifications (Probability of IPD, MSA, PSP) 

2HY: Hoehn and Yahr scale 

3UPDRS III: Unified Parkinson's Disease Rating Scale-III. 

*Also belong to the cases with significantly decreased IPD probability over 0.1 



22 
 

 

Data availability 

The Huashan parkinsonian PET imaging database will be made available to the scientific community upon completion of 

the non-disclosure agreement (NDA) with the corresponding author according to international data protection regulations. Our 

code is available for download at: https://github.com/Louis-YuZhao/deep-metabolic-imaging-indices.git. 
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