8,967 research outputs found

    Rapid pressure compensation by automated cuff pressure controllers worsens sealing in tracheal tubes

    Get PDF
    Background Cyclic redistribution of air within the cuff during respiratory pressure changes creates a self-sealing mechanism which allows tracheal sealing, despite tracheal airway pressure being above baseline cuff inflation pressure. The aim of the present study was to investigate the effect of continuous automated cuff pressure regulation on tracheal sealing during cyclic respiratory pressure changes. Methods In vitro tracheal sealing was studied in four different high volume-low pressure (HVLP) tracheal tube cuffs size internal diameter 8.0 and 5.0 mm in combination with a conventional pressure manometer and two different automated pressure controllers (VBM Cuff Controller; Cuff Pressure Control Tracoeâ„¢). Experiments were performed at 10, 15, 20, and 25 cm H2O cuff pressure during intermittent positive pressure ventilation with peak inspiratory pressures of 20 and 25 cm H2O. Air leakage was assessed spirometrically. Experiments were performed four times with each tube brand and size with two exemplars of each of the three cuff pressure controllers. Results Owing to immediate cuff pressure correction, tracheal sealing at cuff pressure below inspiratory pressure was reduced in most of the tracheal tube cuffs, except in those with reduced sealing characteristics when using the Pressure Control Tracoeâ„¢ compared with the conventional pressure manometer and the VBM Cuff Controller. Tracheal sealing with the Pressure Control Tracoeâ„¢ comparable with the other two devices was only achieved at cuff pressures of 20 and 25 cm H2O. Conclusions Automated cuff pressure controllers with rapid pressure correction interfere with the self-sealing mechanism of high sealing HVLP tube cuffs and reduce their improved sealing characteristic

    In-line filter included into the syringe infusion pump assembly reduces flow irregularities

    Get PDF
    Purpose: To evaluate whether an in-line filter inserted in the syringe pump infusion line assembly influences start-up times and flow irregularities during vertical pump displacement at low infusion rates. Methods: Fluid delivery after syringe pump start-up and after vertical displacement of the syringe pump by −50cm was determined gravimetrically at flow rates of 0.5, 1.0 and 2.0mlh−1. Measurements were repeated for each flow rate four times with two different syringe pumps with and without an in-line filter incorporated. Data are shown as median and range. Results: Start-up times were reduced by an in-line filter at 0.5mlh−1 flow rate from 355.5s (0-660) to 115s (0-320), whereas the effect was attenuated at higher flow rates. Pooling of fluid into the infusion system after lowering the infusion syringe pump was halved in all flow rates tested. Amount of infusion bolus after elevating the syringe pump by 50cm was not affected by an in-line filter. Conclusion: In the evaluated model in-line filters help to reduce flow irregularities and delay in drug delivery of syringe pumps at low flow rates and represent an option to optimize continuous administration of highly concentrated short-acting drugs at very small infusion rate

    Atomic matter wave scanner

    Get PDF
    We report on the experimental realization of an atom optical device, that allows scanning of an atomic beam. We used a time-modulated evanescent wave field above a glass surface to diffract a continuous beam of metastable Neon atoms at grazing incidence. The diffraction angles and efficiencies were controlled by the frequency and form of modulation, respectively. With an optimized shape, obtained from a numerical simulation, we were able to transfer more than 50% of the atoms into the first order beam, which we were able to move over a range of 8 mrad.Comment: 4 pages, 4 figure

    Sum Rules and Moments of the Nucleon Spin Structure Functions

    Full text link
    The nucleon has been used as a laboratory to investigate its own spin structure and Quantum Chromodynamics. New experimental data on nucleon spin structure at low to intermediate momentum transfers combined with existing high momentum transfer data offer a comprehensive picture of the transition region from the {\it confinement} regime of the theory to its {\it asymptotic freedom} regime. Insight for some aspects of the theory is gained by exploring lower moments of spin structure functions and their corresponding sum rules (i.e. the Gerasimov-Drell-Hearn, Bjorken and Burkhardt-Cottingham). These moments are expressed in terms of an operator product expansion using quark and gluon degrees of freedom at moderately large momentum transfers. The sum rules are verified to a good accuracy assuming that no singular behavior of the structure functions is present at very high excitation energies. The higher twist contributions have been examined through the moments evolution as the moments evolution as the momentum transfer varies from higher to lower values. Furthermore, QCD-inspired low-energy effective theories, which explicitly include chiral symmetry breaking, are tested at low momentum transfers. The validity of these theories is further examined as the momentum transfer increases to moderate values. It is found that chiral perturbation calculations agree reasonably well with the first moment of the spin structure function g1g_1 at momentum transfer of 0.1 GeV2^2 but fail to reproduce the neutron data in the case of the generalized polarizability δLT\delta_{LT}.Comment: 21 pages, 4 figures, review for Modern Physics Letters A. Minor modifications in text and improved quality for one figure. Corrected mistakes in section

    The participatory market chain approach: stimulating pro-poor market-chain innovation

    Get PDF
    Innovation in the food and agriculture sector is frequently short-circuited by a lack of trust and communication between actors in the market chain. To overcome these problems and stimulate innovation, the Participatory Market Chain Approach (PMCA) brings together small farmers, market agents, and service providers for an intense process of facilitated interaction. The PMCA uses a flexible three-stage participatory process to improve communication, build trust, and facilitate collaboration among participants so that they can jointly identify, analyze, and exploit new market opportunities. The PMCA focuses on innovation in products, technologies, and ways of working together. By carefully selecting market chains and partners, and building in social responsibility, the PMCA can lead to favourable outcomes and impacts for poor farmers, typically the weakest link in the chain. The PMCA requires facilitation and technical support from professionals with good social skills, research experience, and marketing knowledge, based in a neutral research and development organization. To ensure that impacts are sustained, the PMCA is best used as part of a broader programme of market chain development

    Innovation to assess the biodiversity of indigenous potatoes: The case of the Andean Potato/INCOPA in Peru.

    Get PDF

    Resolved diffraction patterns from a reflection grating for atoms

    Get PDF
    We have studied atomic diffraction at normal incidence from an evanescent standing wave with a high resolution using velocity selective Raman transitions. We have observed up to 3 resolved orders of diffraction, which are well accounted for by a scalar diffraction theory. In our experiment the transverse coherence length of the source is greater than the period of the diffraction grating.Comment: 8 pages, 4 figure

    The phase spiral in Gaia DR3

    Full text link
    We aim to study the phase spiral in the Milky Way (MW) with Gaia DR3. We used an edge detection algorithm to find the border of the phase spiral, allowing us to robustly quantify its shape at different positions and for different selections. We calculated the time of onset of the phase-mixing by determining the different turns of the phase spiral and using the vertical frequencies from commonly used MW potential models. We find that the phase spiral extends down to −1.2-1.2 kpc in height below the plane (about 3 to 5 scale heights of the thin disc) and beyond ±50\pm 50 km/s in VZV_Z. We see a secondary branch mostly at positive vertical velocities when coloured by azimuthal velocity and in the counts projection. We also find complex variations of the phase spirals with angular momentum and azimuth. All these possibly provide evidence of multiple perturbations (from different times or from different perturbers) and/or of the complexity of the phase mixing process. We detect the phase spiral from 6 to 11 kpc from the Galactic centre and find signatures of vertical asymmetries 1-2 kpc beyond this range. We measure small but clear variations with azimuth. When we determine the phase mixing times from the phase spiral at different angular momenta and using the different spiral turns (at different ZZ) we obtain inconsistent times with systematic differences (times increasing with ∣LZ∣|L_Z| and with ∣Z∣|Z|). Our determinations are mostly in the range of [0.3-0.9] Gyr, with an average of 0.5 Gyr. The inconsistencies do not change when using different usual potential models, different stellar distances or frequencies for different kinetic temperatures. They could stem from the inconsistency of potential models with the true MW, and from too simple modelling, in particular neglecting self-gravity, not considering the multiple perturbations and the interference with other processes.Comment: accepted for publication in A&

    Participatory Market Chains and Stakeholder Platforms: The Papa Andina strategy.

    Get PDF
    • …
    corecore