96 research outputs found

    In-parallel polar monitoring of chemiluminescence emission anisotropy at the solid-liquid interface by an optical fiber radial array

    Get PDF
    Chemiluminescence (CL) detection is widely employed in biosensors and miniaturized analytical devices since it offers high detectability and flexible device design (there are no geometry requirements for the measurement cell, except the ability to collect the largest fraction of emitted photons). Although the emission anisotropy phenomenon for an emitting dipole bound to the interface between two media with different refractive index is well known for fluorescence, it is still poorly investigated for CL reactions, in which the excited-state reaction products can diffuse in solution before the photon emission event. In this paper, we propose a simple method for the realtime evaluation of the CL emission anisotropy based on a radial array of optical fibers, embedded in a poly(methyl methacrylate) semicylinder and coupled with a Charge-Coupled Device (CCD) camera through a suitable interface. The polar-time evolutions of the CL emission have been studied for catalyzing enzymes immobilized onto a solid surface (heterogeneous configuration) or free in solution (homogeneous configuration). Evidence of the anisotropy phenomenon is observed, indicating that the lifetime of the excited-state products of the enzyme-catalyzed reactions is shorter than the time required for their diffusion in solution at a distance at which the CL can be considered isotropic. These results open new perspectives in the development of CL-based miniaturized analytical devices

    Rare-earth-activated glasses for solar energy conversion

    Get PDF
    The solar cells efficiency may be improved by better exploitation of the solar spectrum, making use of the down-conversion mechanism, where one high energy photon is cut into two low energy photons. The choice of the matrix is a crucial point to obtain an efficient down-conversion process with rare-earth ions. When energy transfer between rare earth ions is used to activate this process, high emission and absorption cross sections as well as low cut-off phonon energy are mandatory. In this paper we present some results concerning 70SiO2-30HfO2 glass ceramic planar waveguides co-activated by Tb3+/Yb3+ ions, fabricated by sol gel route using a top-down approach, and a bulk fluoride glass of molar composition 70ZrF4 23.5LaF3 0.5AlF3 6GaF3 co-activated by Pr3+/Yb3+ ion. Attention is focused on the assessment of the energy transfer efficiency between the two couples of rare earth ions in the different hosts

    Single - and double energy swift and slow heavy ion irradiated optical waveguides in Er: Tungstene-Tellurite glass and BGO for telecom applications

    Get PDF
    The fabrication of broadband amplifiers in wavelength division multiplexing (WDM) around 1.55 m, as they exhibit large stimulated cross sections and broad emission bandwidth. Bi4Ge3O12 (eultine type BGO) - well known scintillator material, also a rare-earth host material, photorefractive waveguides produced in it only using light ions in the past. Recently: MeV N+ ions and swift O5+ and C5+ ions, too*. Bi12GeO20 (sillenite type BGO) - high photoconductivity and photorefractive sensitivity in the visible and NIR good candidate for real-time holography and optical phase conjugation, photorefractive waveguides produced in it only using light ions. No previous attempts of ion beam fabrication of waveguides in it

    Sol–gel-derived glass-ceramic photorefractive films for photonic structures

    Get PDF
    Glass photonics are widespread, from everyday objects around us to high-tech specialized devices. Among different technologies, sol–gel synthesis allows for nanoscale materials engineering by exploiting its unique structures, such as transparent glass-ceramics, to tailor optical and electromagnetic properties and to boost photon-management yield. Here, we briefly discuss the state of the technology and show that the choice of the sol–gel as a synthesis method brings the advantage of process versatility regarding materials composition and ease of implementation. In this context, we present tin-dioxide–silica (SnO2–SiO2) glass-ceramic waveguides activated by europium ions (Eu3+). The focus is on the photorefractive properties of this system because its photoluminescence properties have already been discussed in the papers presented in the bibliography. The main findings include the high photosensitivity of sol–gel 25SnO2:75SiO2 glass-ceramic waveguides; the ultraviolet (UV)-induced refractive index change (∆n ~ −1.6 × 10−3), the easy fabrication process, and the low propagation losses (0.5 ± 0.2 dB/cm), that make this glass-ceramic an interesting photonic material for smart optical applications

    M-line spectroscopic, spectroscopic ellipsometric and microscopic measurements of optical waveguides fabricated by MeV-energy N+ ion irradiation for telecom applications

    Get PDF
    Irradiation with N+ ions of the 1.5 - 3.5 MeV energy range was applied to optical waveguide formation. Planar and channel waveguides have been fabricated in an Er-doped tungsten-tellurite glass, and in both types of bismuth germanate (BGO) crystals: Bi4Ge3O12 (eulytine) and Bi12GeO20 (sillenite). Multi-wavelength m-line spectroscopy and spectroscopic ellipsometry were used for the characterisation of the ion beam irradiated waveguides. Planar waveguides fabricated in the Er-doped tungsten-tellurite glass using irradiation with N+ ions at 3.5 MeV worked even at the 1550 nm telecommunication wavelength. 3.5 MeV N+ ion irradiated planar waveguides in eulytine-type BGO worked up to 1550 nm and those in sillenite-type BGO worked up to 1330 nm

    Cavity optomechanics on a microfluidic resonator with water and viscous liquids

    Full text link
    Currently, optical- or mechanical-resonances are commonly used in microfluidic research. However, optomechanical oscillations by light pressure were not shown with liquids. This is because replacing the surrounding air with water inherently increases the acoustical impedance and hence the associated acoustical radiation-losses. Here, we bridge between microfluidics and optomechanics by fabricating hollow bubble resonators with liquid inside and optically exciting 100-MHz vibrations with only mW optical-input power. This constitutes the first time that any microfluidic system is optomechanically actuated. We further prove the feasibility of microfluidic optomechanics on liquids by demonstrating vibrations on organic fluids with viscous-dissipation higher than blood viscosity while measuring density changes in the liquid via the vibration frequency shift. Our device will enable using cavity optomechanics for studying non-solid phases of matter

    Leaky mode suppression in planar optical waveguides written in Er:TeO2–WO3 glass and CaF2 crystal via double energy implantation with MeV N+ ions

    No full text
    Ion implantation proved to be an universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er 3+ -doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 l m, as they exhibit large stimulated cross sections and broad emission bandwidth. Calcium fluoride is an excellent optical material, due to its perfect optical characteristics from UV wavelengths up to near IR. It has become a promising laser host material (doped with rare earth elements). Ion implantation was also applied to optical waveguide fabrication in CaF 2 and other halide crystals. In the present work first single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 l m was observed in Er:Te glass, and up to 980 nm in CaF 2 . Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.2 MeV were performed to suppress leaky modes by increasing barrier width

    Optical spectroscopy and waveguide fabrication in Sm3+/Tb3+ doped zinc-sodium-aluminosilicate glasses

    No full text
    A spectroscopic investigation of sodium-zinc-aluminosilicate glasses activated with Sm3+ and Tb3+/Sm3+ ions is performed through their luminescence spectra and decay times. Yellowish-green light emission, with x = 0.37 and y = 0.58 CIE chromaticity coordinates, is obtained in the Tb3+/Sm3+ codoped glass excited at 318 nm. Such yellowish-green emission is generated by the simultaneous emission of Tb3+ and Sm3+ ions, samarium being sensitized by the terbium through a non-radiative energy transfer. From spectroscopic data it is inferred that this energy transfer takes place between Tb3+ and Sm3+ clusters through a short-range interaction mechanism. Optical waveguides are also effectively produced in the glasses by Ag+-Na+ ion exchange
    corecore