2,549 research outputs found

    Top-down formation of fullerenes in the interstellar medium

    Full text link
    [Abridged] Fullerenes have been recently detected in various circumstellar and interstellar environments, raising the question of their formation pathway. It has been proposed that they can form by the photo-chemical processing of large polycyclic aromatic hydrocarbons (PAHs). Following our previous work on the evolution of PAHs in the NGC 7023 reflection nebula, we evaluate, using photochemical modeling, the possibility that the PAH C66_{66}H20_{20} (i.e. circumovalene) can lead to the formation of C60_{60} upon irradiation by ultraviolet photons. The chemical pathway involves full dehydrogenation, folding into a floppy closed cage and shrinking of the cage by loss of C2_2 units until it reaches the symmetric C60_{60} molecule. At 10" from the illuminating star and with realistic molecular parameters, the model predicts that 100% of C66_{66}H20_{20} is converted into C60_{60} in ∌\sim 105^5 years, a timescale comparable to the age of the nebula. Shrinking appears to be the kinetically limiting step of the whole process. Hence, PAHs larger than C66_{66}H20_{20} are unlikely to contribute significantly to the formation of C60_{60}, while PAHs containing between 60 and 66 C atoms should contribute to the formation of C60_{60} with shorter timescales, and PAHs containing less than 60 C atoms will be destroyed. Assuming a classical size distribution for the PAH precursors, our model predicts absolute abundances of C60_{60} are up to several 10−410^{-4} of the elemental carbon, i.e. less than a percent of the typical interstellar PAH abundance, which is consistent with observational studies. According to our model, once formed, C60_{60} can survive much longer than other fullerenes because of the remarkable stability of the C60_{60} molecule at high internal energies.Hence, a natural consequence is that C60_{60} is more abundant than other fullerenes in highly irradiated environments.Comment: Accepted for publication in A&A. Latest version contains the corrected version of Fig.

    30 years of cosmic fullerenes

    Full text link
    In 1985, "During experiments aimed at understanding the mechanisms by which long-chain carbon molecules are formed in interstellar space and circumstellar shells", Harry Kroto and his collaborators serendipitously discovered a new form of carbon: fullerenes. The most emblematic fullerene (i.e. C60_{60} "buckminsterfullerene"), contains exactly 60 carbon atoms organized in a cage-like structure similar to a soccer ball. Since their discovery impacted the field of nanotechnologies, Kroto and colleagues received the Nobel prize in 1996. The cage-like structure, common to all fullerene molecules, gives them unique properties, in particular an extraordinary stability. For this reason and since they were discovered in experiments aimed to reproduce conditions in space, fullerenes were sought after by astronomers for over two decades, and it is only recently that they have been firmly identified by spectroscopy, in evolved stars and in the interstellar medium. This identification offers the opportunity to study the molecular physics of fullerenes in the unique physical conditions provided by space, and to make the link with other large carbonaceous molecules thought to be present in space : polycyclic aromatic hydrocarbons.Comment: To appear in the Proceedings of the annual meeting of the French society of astronomy and astrophysics (SF2A 2015

    Efficient multiple time scale molecular dynamics: using colored noise thermostats to stabilize resonances

    Get PDF
    Multiple time scale molecular dynamics enhances computational efficiency by updating slow motions less frequently than fast motions. However, in practice the largest outer time step possible is limited not by the physical forces but by resonances between the fast and slow modes. In this paper we show that this problem can be alleviated by using a simple colored noise thermostatting scheme which selectively targets the high frequency modes in the system. For two sample problems, flexible water and solvated alanine dipeptide, we demonstrate that this allows the use of large outer time steps while still obtaining accurate sampling and minimizing the perturbation of the dynamics. Furthermore, this approach is shown to be comparable to constraining fast motions, thus providing an alternative to molecular dynamics with constraints.Comment: accepted for publication by the Journal of Chemical Physic

    Extended Red Emission and the evolution of carbonaceaous nanograins in NGC 7023

    Full text link
    Extended Red Emission (ERE) was recently attributed to the photo-luminescence of either doubly ionized Polycyclic Aromatic Hydrocarbons (PAH++^{++}), or charged PAH dimers. We analysed the visible and mid-infrared (mid-IR) dust emission in the North-West and South photo-dissociation regions of the reflection nebula NGC 7023.Using a blind signal separation method, we extracted the map of ERE from images obtained with the Hubble Space Telescope, and at the Canada France Hawaii Telescope. We compared the extracted ERE image to the distribution maps of the mid-IR emission of Very Small Grains (VSGs), neutral and ionized PAHs (PAH0^0 and PAH+^+) obtained with the Spitzer Space Telescope and the Infrared Space Observatory. ERE is dominant in transition regions where VSGs are being photo-evaporated to form free PAH molecules, and is not observed in regions dominated by PAH+^+. Its carrier makes a minor contribution to the mid-IR emission spectrum. These results suggest that the ERE carrier is a transition species formed during the destruction of VSGs. Singly ionized PAH dimers appear as good candidates but PAH++^{++} molecules seem to be excluded.Comment: Accepted for publication in A&

    Mode-coupling theory for reaction dynamics in liquids

    Full text link
    A theory for chemical reaction dynamics in condensed phase systems based on the generalized Langevin formalism of Grote and Hynes is presented. A microscopic approach to calculate the dynamic friction is developed within the framework of a combination of kinetic and mode-coupling theories. The approach provides a powerful analytic tool to study chemical reactions in realistic condensed phase environments. The accuracy of the approach is tested for a model isomerization reaction in a Lennard-Jones fluid. Good agreement is obtained for the transmission coefficient at different solvent densities, in comparison with numerical simulations based on the reactive-flux approach.Comment: 7 pages, 3 figure

    Polycyclic aromatic hydrocarbons and molecular hydrogen in oxygen-rich planetary nebulae: the case of NGC6720

    Full text link
    Evolved stars are primary sources for the formation of polycyclic aromatic hydrocarbons (PAHs) and dust grains. Their circumstellar chemistry is usually designated as either oxygen-rich or carbon-rich, although dual-dust chemistry objects, whose infrared spectra reveal both silicate- and carbon-dust features, are also known. The exact origin and nature of this dual-dust chemistry is not yet understood. Spitzer-IRS mid-infrared spectroscopic imaging of the nearby, oxygen-rich planetary nebula NGC6720 reveals the presence of the 11.3 micron aromatic (PAH) emission band. It is attributed to emission from neutral PAHs, since no band is observed in the 7 to 8 micron range. The spatial distribution of PAHs is found to closely follow that of the warm clumpy molecular hydrogen emission. Emission from both neutral PAHs and warm H2 is likely to arise from photo-dissociation regions associated with dense knots that are located within the main ring. The presence of PAHs together with the previously derived high abundance of free carbon (relative to CO) suggest that the local conditions in an oxygen-rich environment can also become conducive to in-situ formation of large carbonaceous molecules, such as PAHs, via a bottom-up chemical pathway. In this scenario, the same stellar source can enrich the interstellar medium with both oxygen-rich dust and large carbonaceous molecules.Comment: Accepted by MNRAS. 5 page

    Quantum limited particle sensing in optical tweezers

    Get PDF
    Particle sensing in optical tweezers systems provides information on the position, velocity and force of the specimen particles. The conventional quadrant detection scheme is applied ubiquitously in optical tweezers experiments to quantify these parameters. In this paper we show that quadrant detection is non-optimal for particle sensing in optical tweezers and propose an alternative optimal particle sensing scheme based on spatial homodyne detection. A formalism for particle sensing in terms of transverse spatial modes is developed and numerical simulations of the efficacy of both quadrant and spatial homodyne detection are shown. We demonstrate that an order of magnitude improvement in particle sensing sensitivity can be achieved using spatial homodyne over quadrant detection.Comment: Submitted to Biophys

    Magnetic domain fluctuations in an antiferromagnetic film observed with coherent resonant soft x-ray scattering

    Full text link
    We report the direct observation of slow fluctuations of helical antiferromagnetic domains in an ultra-thin holmium film using coherent resonant magnetic x-ray scattering. We observe a gradual increase of the fluctuations in the speckle pattern with increasing temperature, while at the same time a static contribution to the speckle pattern remains. This finding indicates that domain-wall fluctuations occur over a large range of time scales. We ascribe this non-ergodic behavior to the strong dependence of the fluctuation rate on the local thickness of the film.Comment: to appear in Phys. Rev. Let

    Unexpected Effect of Internal Degrees of Freedom on Transverse Phonons in Supercooled Liquids

    Full text link
    We show experimentally that in a supercooled liquid composed of molecules with internal degrees of freedom the internal modes contribute to the frequency dependent shear viscosity and damping of transverse phonons, which results in an additional broadening of the transverse Brillouin lines. Earlier, only the effect of internal modes on the frequency dependent bulk viscosity and damping of longitudinal phonons was observed and explained theoretically in the limit of weak coupling of internal degrees of freedom to translational motion. A new theory is needed to describe this new effect. We also demonstrate, that the contributions of structural relaxation and internal processes to the width of the Brillouin lines can be separated by measurements under high pressure

    Laboratory studies of polycyclic aromatic hydrocarbons: the search for interstellar candidates

    Full text link
    Polycyclic Aromatic Hydrocarbons (PAHs) are considered as a major constituent of interstellar dust. They have been proposed as the carriers of the Aromatic Infrared Bands (AIBs) observed in emission in the mid-IR. They likely have a significant contribution to various features of the extinction curve such as the 220 nm bump,the far-UV rise and the diffuse interstellar bands. Emission bands are also expected in the far-IR, which are better fingerprints of molecular identity than the AIBs. They will be searched for with the Herschel Space Observatory. Rotational emission is also expected in the mm range for those molecules which carry significant dipole moments. Despite spectroscopic studies in the laboratory, no individual PAH species could be identified. This emphasises the need for an investigation on where interstellar PAHs come from and how they evolve due to environmental conditions: ionisation and dissociation upon UV irradiation, interactions with electrons, gas and dust. There is also evidence for PAH species to contribute to the depletion of heavy atoms from the gas phase, in particular Si and Fe. This paper illustrates how laboratory work can be inspired from observations. In particular there is a need for understanding the chemical properties of PAHs and PAH-related species, including very small grains, in physical conditions that mimic those found in interstellar space. This motivates a joint effort between astrophysicists, physicists and chemists. Such interdisciplinary studies are currently performed, taking advantage of the PIRENEA set-up, a cold ion trap dedicated to astrochemistry.Comment: to appear in "Cosmic Dust - Near and Far", Th. Henning, E. Grun, J. Steinacker (eds.
    • 

    corecore