2,549 research outputs found
Top-down formation of fullerenes in the interstellar medium
[Abridged] Fullerenes have been recently detected in various circumstellar
and interstellar environments, raising the question of their formation pathway.
It has been proposed that they can form by the photo-chemical processing of
large polycyclic aromatic hydrocarbons (PAHs). Following our previous work on
the evolution of PAHs in the NGC 7023 reflection nebula, we evaluate, using
photochemical modeling, the possibility that the PAH CH (i.e.
circumovalene) can lead to the formation of C upon irradiation by
ultraviolet photons. The chemical pathway involves full dehydrogenation,
folding into a floppy closed cage and shrinking of the cage by loss of C
units until it reaches the symmetric C molecule. At 10" from the
illuminating star and with realistic molecular parameters, the model predicts
that 100% of CH is converted into C in 10
years, a timescale comparable to the age of the nebula. Shrinking appears to be
the kinetically limiting step of the whole process. Hence, PAHs larger than
CH are unlikely to contribute significantly to the formation of
C, while PAHs containing between 60 and 66 C atoms should contribute to
the formation of C with shorter timescales, and PAHs containing less
than 60 C atoms will be destroyed. Assuming a classical size distribution for
the PAH precursors, our model predicts absolute abundances of C are up
to several of the elemental carbon, i.e. less than a percent of the
typical interstellar PAH abundance, which is consistent with observational
studies. According to our model, once formed, C can survive much longer
than other fullerenes because of the remarkable stability of the C
molecule at high internal energies.Hence, a natural consequence is that
C is more abundant than other fullerenes in highly irradiated
environments.Comment: Accepted for publication in A&A. Latest version contains the
corrected version of Fig.
30 years of cosmic fullerenes
In 1985, "During experiments aimed at understanding the mechanisms by which
long-chain carbon molecules are formed in interstellar space and circumstellar
shells", Harry Kroto and his collaborators serendipitously discovered a new
form of carbon: fullerenes. The most emblematic fullerene (i.e. C
"buckminsterfullerene"), contains exactly 60 carbon atoms organized in a
cage-like structure similar to a soccer ball. Since their discovery impacted
the field of nanotechnologies, Kroto and colleagues received the Nobel prize in
1996. The cage-like structure, common to all fullerene molecules, gives them
unique properties, in particular an extraordinary stability. For this reason
and since they were discovered in experiments aimed to reproduce conditions in
space, fullerenes were sought after by astronomers for over two decades, and it
is only recently that they have been firmly identified by spectroscopy, in
evolved stars and in the interstellar medium. This identification offers the
opportunity to study the molecular physics of fullerenes in the unique physical
conditions provided by space, and to make the link with other large
carbonaceous molecules thought to be present in space : polycyclic aromatic
hydrocarbons.Comment: To appear in the Proceedings of the annual meeting of the French
society of astronomy and astrophysics (SF2A 2015
Efficient multiple time scale molecular dynamics: using colored noise thermostats to stabilize resonances
Multiple time scale molecular dynamics enhances computational efficiency by
updating slow motions less frequently than fast motions. However, in practice
the largest outer time step possible is limited not by the physical forces but
by resonances between the fast and slow modes. In this paper we show that this
problem can be alleviated by using a simple colored noise thermostatting scheme
which selectively targets the high frequency modes in the system. For two
sample problems, flexible water and solvated alanine dipeptide, we demonstrate
that this allows the use of large outer time steps while still obtaining
accurate sampling and minimizing the perturbation of the dynamics. Furthermore,
this approach is shown to be comparable to constraining fast motions, thus
providing an alternative to molecular dynamics with constraints.Comment: accepted for publication by the Journal of Chemical Physic
Extended Red Emission and the evolution of carbonaceaous nanograins in NGC 7023
Extended Red Emission (ERE) was recently attributed to the photo-luminescence
of either doubly ionized Polycyclic Aromatic Hydrocarbons (PAH), or
charged PAH dimers. We analysed the visible and mid-infrared (mid-IR) dust
emission in the North-West and South photo-dissociation regions of the
reflection nebula NGC 7023.Using a blind signal separation method, we extracted
the map of ERE from images obtained with the Hubble Space Telescope, and at the
Canada France Hawaii Telescope. We compared the extracted ERE image to the
distribution maps of the mid-IR emission of Very Small Grains (VSGs), neutral
and ionized PAHs (PAH and PAH) obtained with the Spitzer Space
Telescope and the Infrared Space Observatory. ERE is dominant in transition
regions where VSGs are being photo-evaporated to form free PAH molecules, and
is not observed in regions dominated by PAH. Its carrier makes a minor
contribution to the mid-IR emission spectrum. These results suggest that the
ERE carrier is a transition species formed during the destruction of VSGs.
Singly ionized PAH dimers appear as good candidates but PAH molecules
seem to be excluded.Comment: Accepted for publication in A&
Mode-coupling theory for reaction dynamics in liquids
A theory for chemical reaction dynamics in condensed phase systems based on
the generalized Langevin formalism of Grote and Hynes is presented. A
microscopic approach to calculate the dynamic friction is developed within the
framework of a combination of kinetic and mode-coupling theories. The approach
provides a powerful analytic tool to study chemical reactions in realistic
condensed phase environments. The accuracy of the approach is tested for a
model isomerization reaction in a Lennard-Jones fluid. Good agreement is
obtained for the transmission coefficient at different solvent densities, in
comparison with numerical simulations based on the reactive-flux approach.Comment: 7 pages, 3 figure
Polycyclic aromatic hydrocarbons and molecular hydrogen in oxygen-rich planetary nebulae: the case of NGC6720
Evolved stars are primary sources for the formation of polycyclic aromatic
hydrocarbons (PAHs) and dust grains. Their circumstellar chemistry is usually
designated as either oxygen-rich or carbon-rich, although dual-dust chemistry
objects, whose infrared spectra reveal both silicate- and carbon-dust features,
are also known. The exact origin and nature of this dual-dust chemistry is not
yet understood. Spitzer-IRS mid-infrared spectroscopic imaging of the nearby,
oxygen-rich planetary nebula NGC6720 reveals the presence of the 11.3 micron
aromatic (PAH) emission band. It is attributed to emission from neutral PAHs,
since no band is observed in the 7 to 8 micron range. The spatial distribution
of PAHs is found to closely follow that of the warm clumpy molecular hydrogen
emission. Emission from both neutral PAHs and warm H2 is likely to arise from
photo-dissociation regions associated with dense knots that are located within
the main ring. The presence of PAHs together with the previously derived high
abundance of free carbon (relative to CO) suggest that the local conditions in
an oxygen-rich environment can also become conducive to in-situ formation of
large carbonaceous molecules, such as PAHs, via a bottom-up chemical pathway.
In this scenario, the same stellar source can enrich the interstellar medium
with both oxygen-rich dust and large carbonaceous molecules.Comment: Accepted by MNRAS. 5 page
Quantum limited particle sensing in optical tweezers
Particle sensing in optical tweezers systems provides information on the
position, velocity and force of the specimen particles. The conventional
quadrant detection scheme is applied ubiquitously in optical tweezers
experiments to quantify these parameters. In this paper we show that quadrant
detection is non-optimal for particle sensing in optical tweezers and propose
an alternative optimal particle sensing scheme based on spatial homodyne
detection. A formalism for particle sensing in terms of transverse spatial
modes is developed and numerical simulations of the efficacy of both quadrant
and spatial homodyne detection are shown. We demonstrate that an order of
magnitude improvement in particle sensing sensitivity can be achieved using
spatial homodyne over quadrant detection.Comment: Submitted to Biophys
Magnetic domain fluctuations in an antiferromagnetic film observed with coherent resonant soft x-ray scattering
We report the direct observation of slow fluctuations of helical
antiferromagnetic domains in an ultra-thin holmium film using coherent resonant
magnetic x-ray scattering. We observe a gradual increase of the fluctuations in
the speckle pattern with increasing temperature, while at the same time a
static contribution to the speckle pattern remains. This finding indicates that
domain-wall fluctuations occur over a large range of time scales. We ascribe
this non-ergodic behavior to the strong dependence of the fluctuation rate on
the local thickness of the film.Comment: to appear in Phys. Rev. Let
Unexpected Effect of Internal Degrees of Freedom on Transverse Phonons in Supercooled Liquids
We show experimentally that in a supercooled liquid composed of molecules
with internal degrees of freedom the internal modes contribute to the frequency
dependent shear viscosity and damping of transverse phonons, which results in
an additional broadening of the transverse Brillouin lines. Earlier, only the
effect of internal modes on the frequency dependent bulk viscosity and damping
of longitudinal phonons was observed and explained theoretically in the limit
of weak coupling of internal degrees of freedom to translational motion. A new
theory is needed to describe this new effect. We also demonstrate, that the
contributions of structural relaxation and internal processes to the width of
the Brillouin lines can be separated by measurements under high pressure
Laboratory studies of polycyclic aromatic hydrocarbons: the search for interstellar candidates
Polycyclic Aromatic Hydrocarbons (PAHs) are considered as a major constituent
of interstellar dust. They have been proposed as the carriers of the Aromatic
Infrared Bands (AIBs) observed in emission in the mid-IR. They likely have a
significant contribution to various features of the extinction curve such as
the 220 nm bump,the far-UV rise and the diffuse interstellar bands. Emission
bands are also expected in the far-IR, which are better fingerprints of
molecular identity than the AIBs. They will be searched for with the Herschel
Space Observatory. Rotational emission is also expected in the mm range for
those molecules which carry significant dipole moments. Despite spectroscopic
studies in the laboratory, no individual PAH species could be identified. This
emphasises the need for an investigation on where interstellar PAHs come from
and how they evolve due to environmental conditions: ionisation and
dissociation upon UV irradiation, interactions with electrons, gas and dust.
There is also evidence for PAH species to contribute to the depletion of heavy
atoms from the gas phase, in particular Si and Fe. This paper illustrates how
laboratory work can be inspired from observations. In particular there is a
need for understanding the chemical properties of PAHs and PAH-related species,
including very small grains, in physical conditions that mimic those found in
interstellar space. This motivates a joint effort between astrophysicists,
physicists and chemists. Such interdisciplinary studies are currently
performed, taking advantage of the PIRENEA set-up, a cold ion trap dedicated to
astrochemistry.Comment: to appear in "Cosmic Dust - Near and Far", Th. Henning, E. Grun, J.
Steinacker (eds.
- âŠ