11 research outputs found

    Modulation of electrically evoked acetylcholine release in cultured rat septal neurones

    Get PDF
    The electrically evoked release of acetylcholine and its modulation via auto- and heteroreceptors were studied in primary cell cultures prepared from embryonic rat septum (ED 17). Cultures were grown for 1, 2 or 3 weeks on circular, poly D-lysine-coated glass coverslips. They developed a dense network of non-neuronal and neuronal cells, only some of which were immunopositive for choline acetyltransferase. To measure acetylcholine release, the cells on the coverslips were pre-incubated with [3H]choline (0.1 micromol/L), superfused with modified Krebs-Henseleit buffer at 25 degrees C and electrically stimulated twice for 2 min (S1, S2; 3 Hz, 0.5 ms, 90-100 mA). The electrically evoked overflow of [3H] from the cells consisted of approximately 80% of authentic [3H]Ach, was largely Ca2+-dependent and tetrodotoxin sensitive, and hence represents an action potential-evoked, exocytotic release of acetylcholine. Using pairs of selective agonists and antagonist added before S2, muscarinic autoreceptors, as well as inhibitory adenosine A1- and opioid mu-receptors, could be detected, whereas delta-opioid receptors were not found. Evoked [3H] overflow from cultures grown for 1 week, although Ca2+ dependent and tetrodotoxin sensitive, was insensitive to the muscarinic agonist oxotremorine, whereas the effect of oxotremorine on cells grown for 3 weeks was even more pronounced than that in 2-week-old cultures. In conclusion, similar to observations on rat septal tissue in vivo, acetylcholine release from septal cholinergic neurones grown in vitro is inhibited via muscarinic, adenosine A1 and mu-opioid receptors. This in vitro model may prove useful in the exploration of regulatory mechanisms underlying the expression of release modulating receptors on septal cholinergic neurones

    Targeting CD34(+) cells of the inflamed synovial endothelium by guided nanoparticles for the treatment of rheumatoid arthritis

    Get PDF
    Despite the advances in the treatment of rheumatoid arthritis (RA) achieved in the last few years, several patients are diagnosed late, do not respond to or have to stop therapy because of inefficacy and/or toxicity, leaving still a huge unmet need. Tissue-specific strategies have the potential to address some of these issues. The aim of the study is the development of a safe nanotechnology approach for tissue-specific delivery of drugs and diagnostic probes. CD34 + endothelial precursors were addressed in inflamed synovium using targeted biodegradable nanoparticles (tBNPs). These nanostructures were made of poly-lactic acid, poly-caprolactone, and PEG and then coated with a synovial homing peptide. Immunofluorescence analysis clearly demonstrated their capacity to selectively address CD34 + endothelial cells in synovial tissue obtained from human, mouse, and rat. Biodistribution studies in two different animal models of rheumatoid arthritis (antigen-induced arthritis/AIA and collagen-induced arthritis/CIA) confirmed the selective accumulation in inflamed joints but also evidenced the capacity of tBNP to detect early phases of the disease and the preferential liver elimination. The therapeutic effect of methotrexate (MTX)-loaded tBNPs were studied in comparison with conventional MTX doses. MTX-loaded tBNPs prevented and treated CIA and AIA at a lower dose and reduced administration frequency than MTX. Moreover, MTX-loaded tBNP showed a novel mechanism of action, in which the particles target and kill CD34 + endothelial progenitors, preventing neo-angiogenesis and, consequently, synovial inflammation. tBNPs represent a stable and safe platform to develop highly-sensitive imaging and therapeutic approaches in RA targeting specifically synovial neo-angiogenesis to reduce local inflammation

    Ballooning osteolysis in 71 failed total ankle arthroplasties: Is hydroxyapatite a risk factor?

    No full text
    Background and purpose — Aseptic loosening is a major cause of failure in total ankle arthroplasty (TAA). In contrast to other total joint replacements, large periarticular cysts (ballooning osteolysis) have frequently been observed in this context. We investigated periprosthetic tissue responses in failed TAA, and performed an element analysis of retrieved tissues in failed TAA. Patients and methods — The study cohort consisted of 71 patients undergoing revision surgery for failed TAA, all with hydroxyapatite-coated implants. In addition, 5 patients undergoing primary TAA served as a control group. Radiologically, patients were classified into those with ballooning osteolysis and those without, according to defined criteria. Histomorphometric, immunohistochemical, and elemental analysis of tissues was performed. Von Kossa staining and digital microscopy was performed on all tissue samples. Results — Patients without ballooning osteolysis showed a generally higher expression of lymphocytes, and CD3+, CD11c+, CD20+, and CD68+ cells in a perivascular distribution, compared to diffuse expression. The odds of having ballooning osteolysis was 300 times higher in patients with calcium content >0.5 mg/g in periprosthetic tissue than in patients with calcium content ≤0.5 mg/g (p < 0.001). Interpretation — There have been very few studies investigating the pathomechanisms of failed TAA and the cause-effect nature of ballooning osteolysis in this context. Our data suggest that the hydroxyapatite coating of the implant may be a contributory factor

    Radioactive Beams for Image-Guided Particle Therapy : The BARB Experiment at GSI

    Get PDF
    Several techniques are under development for image-guidance in particle therapy. Positron (β+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using β+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separation with the fragment separator FRS in the FAIR-phase-0 in Darmstadt, it is now possible to reach radioactive ion beams with sufficient intensity to treat a tumor in small animals. This was the motivation of the BARB (Biomedical Applications of Radioactive ion Beams) experiment that is ongoing at GSI in Darmstadt. This paper will present the plans and instruments developed by the BARB collaboration for testing the use of radioactive beams in cancer therapy.peerReviewe

    Literaturverzeichnis

    No full text
    corecore