1,281 research outputs found

    Grids of stellar models. VIII. From 0.4 to 1.0 Msun at Z=0.020 and Z=0.001, with the MHD equation of state

    Full text link
    We present stellar evolutionary models covering the mass range from 0.4 to 1 Msun calculated for metallicities Z=0.020 and 0.001 with the MHD equation of state (Hummer & Mihalas, 1988; Mihalas et al. 1988; D\"appen et al. 1988). A parallel calculation using the OPAL (Rogers et al. 1996) equation of state has been made to demonstrate the adequacy of the MHD equation of state in the range of 1.0 to 0.8 Msun (the lower end of the OPAL tables). Below, down to 0.4 Msun, we have justified the use of the MHD equation of state by theoretical arguments and the findings of Chabrier & Baraffe (1997). We use the radiative opacities by Iglesias & Rogers (1996), completed with the atomic and molecular opacities by Alexander & Fergusson (1994). We follow the evolution from the Hayashi fully convective configuration up to the red giant tip for the most massive stars, and up to an age of 20 Gyr for the less massive ones. We compare our solar-metallicity models with recent models computed by other groups and with observations. The present stellar models complete the set of grids computed with the same up-to-date input physics by the Geneva group [Z=0.020 and 0.001, Schaller et al. (1992), Bernasconi (1996), and Charbonnel et al. (1996); Z=0.008, Schaerer et al. (1992); Z=0.004, Charbonnel et al. (1993); Z=0.040, Schaerer et al. (1993); Z=0.10, Mowlavi et al. (1998); enhanced mass loss rate evolutionary tracks, Meynet et al. (1994)].Comment: Accepted for publication in A&A Supplement Serie

    Density Functional Study of Cubic to Rhombohedral Transition in α\alpha-AlF3_3

    Full text link
    Under heating, α\alpha-AlF3_3 undergoes a structural phase transition from rhombohedral to cubic at temperature TT around 730 K. The density functional method is used to examine the TT=0 energy surface in the structural parameter space, and finds the minimum in good agreement with the observed rhombohedral structure. The energy surface and electronic wave-functions at the minimum are then used to calculate properties including density of states, Γ\Gamma-point phonon modes, and the dielectric function. The dipole formed at each fluorine ion in the low temperature phase is also calculated, and is used in a classical electrostatic picture to examine possible antiferroelectric aspects of this phase transition.Comment: A 6-page manuscript with 4 figures and 4 table

    Automatic detection of limb prominences in 304 A EUV images

    Get PDF
    A new algorithm for automatic detection of prominences on the solar limb in 304 A EUV images is presented, and results of its application to SOHO/EIT data discussed. The detection is based on the method of moments combined with a classifier analysis aimed at discriminating between limb prominences, active regions, and the quiet corona. This classifier analysis is based on a Support Vector Machine (SVM). Using a set of 12 moments of the radial intensity profiles, the algorithm performs well in discriminating between the above three categories of limb structures, with a misclassification rate of 7%. Pixels detected as belonging to a prominence are then used as starting point to reconstruct the whole prominence by morphological image processing techniques. It is planned that a catalogue of limb prominences identified in SOHO and STEREO data using this method will be made publicly available to the scientific community

    Solar constraints on new couplings between electromagnetism and gravity

    Get PDF
    The unification of quantum field theory and general relativity is a fundamental goal of modern physics. In many cases, theoretical efforts to achieve this goal introduce auxiliary gravitational fields, ones in addition to the familiar symmetric second-rank tensor potential of general relativity, and lead to nonmetric theories because of direct couplings between these auxiliary fields and matter. Here, we consider an example of a metric-affine gauge theory of gravity in which torsion couples nonminimally to the electromagnetic field. This coupling causes a phase difference to accumulate between different polarization states of light as they propagate through the metric-affine gravitational field. Solar spectropolarimetric observations are reported and used to set strong constraints on the relevant coupling constant k:k(2)\u3c (2.5 km)(2)

    Longitudinal and transversal piezoresistive response of granular metals

    Full text link
    In this paper, we study the piezoresistive response and its anisotropy for a bond percolation model of granular metals. Both effective medium results and numerical Monte Carlo calculations of finite simple cubic networks show that the piezoresistive anisotropy is a strongly dependent function of bond probability p and of bond conductance distribution width \Delta g. We find that piezoresistive anisotropy is strongly suppressed as p is reduced and/or \Delta g is enhanced and that it vanishes at the percolation thresold p=p_c. We argue that a measurement of the piezoresistive anisotropy could be a sensitive tool to estimate critical metallic concentrations in real granular metals.Comment: 14 pages, 7 eps figure

    Micro-Sigmoids as Progenitors of Coronal Jets - Is Eruptive Activity Self-Similarly Multi-Scaled?

    Full text link
    Observations from the X-ray telescope (XRT) on Hinode are used to study the nature of X-ray bright points, sources of coronal jets. Several jet events in the coronal holes are found to erupt from small-scale, S-shaped bright regions. This finding suggests that coronal micro-sigmoids may well be progenitors of coronal jets. Moreover, the presence of these structures may explain numerous observed characteristics of jets such as helical structures, apparent transverse motions, and shapes. In analogy to large-scale sigmoids giving rise to coronal mass ejections (CMEs), a promising future task would perhaps be to investigate whether solar eruptive activity, from coronal jets to CMEs, is self-similar in terms of properties and instability mechanisms.Comment: 8 pages, 5 figures, 1 tabl

    Critical Indices as Limits of Control Functions

    Full text link
    A variant of self-similar approximation theory is suggested, permitting an easy and accurate summation of divergent series consisting of only a few terms. The method is based on a power-law algebraic transformation, whose powers play the role of control functions governing the fastest convergence of the renormalized series. A striking relation between the theory of critical phenomena and optimal control theory is discovered: The critical indices are found to be directly related to limits of control functions at critical points. The method is applied to calculating the critical indices for several difficult problems. The results are in very good agreement with accurate numerical data.Comment: 1 file, 5 pages, RevTe

    Modeling the Near-Infrared Luminosity Functions of Young Stellar Clusters

    Get PDF
    We present the results of numerical experiments designed to evaluate the usefulness of near-infrared luminosity functions for constraining the Initial Mass Function (IMF) of young stellar populations. From this numerical modeling, we find that the luminosity function of a young stellar population is considerably more sensitive to variations in the underlying initial mass function than to either variations in the star forming history or assumed pre-main-sequence (PMS) mass-to-luminosity relation. To illustrate the potential effectiveness of using the KLF of a young cluster to constrain its IMF, we model the observed K band luminosity function of the nearby Trapezium cluster. Our derived mass function for the Trapezium spans two orders of magnitude in stellar mass (5 Msun to 0.02 Msun), has a peak near the hydrogen burning limit, and has an IMF for Brown Dwarfs which steadily decreases with decreasing mass.Comment: To appear in ApJ (1 April 2000). 37 pages including 11 figures, AAS: ver 5.

    Highly variable young massive stars in ATLASGAL clumps

    Get PDF
    This work is supported by a H2020 Marie Skłodowska-Curie Action (GESTATE 661249) funded by the European Research Commission. The final, definitive version of this paper has been published in The Astrophysical Journal, Vol. 823 (24), December 2016, DOI: 10.3847/0004-637X/833/1/24 © 2016. The American Astronomical Society. All rights reserved.High-amplitude variability in Young Stellar Objects (YSOs) is usually associated with episodic accretion events. It has not been observed so far in massive YSOs. Here, the high-amplitude variable star sample of ContrerasPena et al.(2016) has been used to search for highly-variable (Delta Ks > 1 mag) sources coinciding with dense clumps mapped using the 850 um continuum emission by the ATLASGAL survey. 18 variable sources are centred on the sub-mm clump peaks, and coincide ( 2 mag, significantly higher compared to the mean variability of the entire VVV sample. The light curves of these objects sampled between 2010-2015 display rising, declining, or quasi-periodic behaviour but no clear periodicity. Light-curve analysis using the Plavchan method shows that the most prominent phased signals have periods of a few hundred days. The nature and time-scale of variations found in 6.7 Ghz methanol maser emission (MME) in massive stars are similar to that of the VYSO light curves. We argue that the origin of the observed variability is episodic accretion. We suggest that the timescale of a few hundred days may represent the frequency at which a spiralling disk feeds dense gas to the young massive star.Peer reviewedFinal Published versio
    corecore