7,647 research outputs found

    The accretion environment of Supergiant Fast X-ray Transients probed with XMM-Newton

    Get PDF
    Supergiant fast X-ray transients (SFXTs) are characterized by a remarkable variability in the X-ray domain, widely ascribed to the accretion from a clumpy stellar wind. In this paper we performed a systematic and homogeneous analysis of sufficiently bright X-ray flares from the SFXTs observed with XMM-Newton to probe spectral variations on timescales as short as a few hundred of seconds. Our ultimate goal is to investigate if SFXT flares and outbursts are triggered by the presence of clumps and eventually reveal whether strongly or mildly dense clumps are required. For all sources, we employ a technique developed by our group, making use of an adaptive rebinned hardness ratio to optimally select the time intervals for the spectral extraction. A total of twelve observations performed in the direction of five SFXTs are reported. We show that both strongly and mildly dense clumps can trigger these events. In the former case, the local absorption column density may increase by a factor of >>3, while in the latter case, the increase is only by a factor of 2-3 (or lower). Overall, there seems to be no obvious correlation between the dynamic ranges in the X-ray fluxes and absorption column densities in SFXTs, with an indication that lower densities are recorded at the highest fluxes. This can be explained by the presence of accretion inhibition mechanism(s). We propose a classification of the flares/outbursts from these sources to drive future observational investigations. We suggest that the difference between the classes of flares/outbursts is related to the fact that the mechanism(s) inhibiting accretion can be overcome more easily in some sources compared to others. We also investigate the possibility that different stellar wind structures, rather than clumps, could provide the means to temporarily overcome the inhibition of accretion in SFXTs.Comment: Accepted for publication on A&

    The Amati relation in the "fireshell" model

    Full text link
    (Shortened) CONTEXT: [...] AIMS: Motivated by the relation proposed by Amati and collaborators, we look within the ``fireshell'' model for a relation between the peak energy E_p of the \nu F_\nu total time-integrated spectrum of the afterglow and the total energy of the afterglow E_{aft}, which in our model encompasses and extends the prompt emission. METODS: [...] Within the fireshell model [...] We can then build two sets of ``gedanken'' GRBs varying the total energy of the electron-positron plasma E^{e^\pm}_{tot} and keeping the same baryon loading B of GRB050315. The first set assumes for the effective CBM density the one obtained in the fit of GRB050315. The second set assumes instead a constant CBM density equal to the average value of the GRB050315 prompt phase. RESULTS: For the first set of ``gedanken'' GRBs we find a relation E_p\propto (E_{aft})^a, with a = 0.45 \pm 0.01, whose slope strictly agrees with the Amati one. Such a relation, in the limit B \to 10^{-2}, coincides with the Amati one. Instead, in the second set of ``gedanken'' GRBs no correlation is found. CONCLUSIONS: Our analysis excludes the Proper-GRB (P-GRB) from the prompt emission, extends all the way to the latest afterglow phases and is independent on the assumed cosmological model, since all ``gedanken'' GRBs are at the same redshift. The Amati relation, on the other hand, includes also the P-GRB, focuses on the prompt emission only, and is therefore influenced by the instrumental threshold which fixes the end of the prompt emission, and depends on the assumed cosmology. This may well explain the intrinsic scatter observed in the Amati relation.Comment: 4 pages, 5 figures, to appear on A&A Letter

    Macroscopic polarization and band offsets at nitride heterojunctions

    Full text link
    Ab initio electronic structure studies of prototypical polar interfaces of wurtzite III-V nitrides show that large uniform electric fields exist in epitaxial nitride overlayers, due to the discontinuity across the interface of the macroscopic polarization of the constituent materials. Polarization fields forbid a standard evaluation of band offsets and formation energies: using new techniques, we find a large forward-backward asymmetry of the offset (0.2 eV for AlN/GaN (0001), 0.85 eV for GaN/AlN (0001)), and tiny interface formation energies.Comment: RevTeX 4 pages, 2 figure

    Equilibrium and stability of neutrino lumps as TOV solutions

    Full text link
    We report about stability conditions for static, spherically symmetric objects that share the essential features of mass varying neutrinos in cosmological scenarios. Compact structures of particles with variable mass are held together preponderantly by an attractive force mediated by a background scalar field. Their corresponding conditions for equilibrium and stability are given in terms of the ratio between the total mass-energy and the spherical lump radius, M/RM/R. We show that the mass varying mechanism leading to lump formation can modify the cosmological predictions for the cosmological neutrino mass limits. Our study comprises Tolman-Oppenheimer-Volkoff solutions of relativistic objects with non-uniform energy densities. The results leave open some questions concerning stable regular solutions that, to an external observer, very closely reproduce the preliminary conditions to form Schwarzschild black holes.Comment: 20 pages, 5 figure

    Distributed and Collaborative Synthetic Environments

    Get PDF
    Fast graphics workstations and increased computing power, together with improved interface technologies, have created new and diverse possibilities for developing and interacting with synthetic environments. A synthetic environment system is generally characterized by input/output devices that constitute the interface between the human senses and the synthetic environment generated by the computer; and a computation system running a real-time simulation of the environment. A basic need of a synthetic environment system is that of giving the user a plausible reproduction of the visual aspect of the objects with which he is interacting. The goal of our Shastra research project is to provide a substrate of geometric data structures and algorithms which allow the distributed construction and modification of the environment, efficient querying of objects attributes, collaborative interaction with the environment, fast computation of collision detection and visibility information for efficient dynamic simulation and real-time scene display. In particular, we address the following issues: (1) A geometric framework for modeling and visualizing synthetic environments and interacting with them. We highlight the functions required for the geometric engine of a synthetic environment system. (2) A distribution and collaboration substrate that supports construction, modification, and interaction with synthetic environments on networked desktop machines

    Reproducing neutrino effects on the matter power spectrum through a degenerate Fermi gas approach

    Full text link
    Modifications on the predictions about the matter power spectrum based on the hypothesis of a tiny contribution from a degenerate Fermi gas (DFG) test-fluid to some dominant cosmological scenario are investigated. Reporting about the systematic way of accounting for all the cosmological perturbations, through the Boltzmann equation we obtain the analytical results for density fluctuation, δ\delta, and fluid velocity divergence, θ\theta, of the DFG. Small contributions to the matter power spectrum are analytically obtained for the radiation-dominated background, through an ultra-relativistic approximation, and for the matter-dominated and Λ\Lambda-dominated eras, through a non-relativistic approximation. The results can be numerically reproduced and compared with those of considering non-relativistic and ultra-relativistic neutrinos into the computation of the matter power spectrum. Lessons concerning the formation of large scale structures of a DFG are depicted, and consequent deviations from standard Λ\LambdaCDM predictions for the matter power spectrum (with and without neutrinos) are quantified.Comment: 28 pages, 06 figure

    Active learning approach to enhance rotor dynamics understanding: A classroom demonstration

    Get PDF
    In the last decades, novel teaching strategies have been increasingly adopted to improve and enhance the students learning process by promoting their involvement and engagement during classes. In this context, this work presents a laboratory experience proposed to the third-year bachelor students of the course of ‘Mechanics of Vibrations’, held at the faculty of mechanical engineering of Politecnico di Milano. The experience consisted in the presentation of a rotor test bench specifically designed for educational purposes. Main concepts of rotor dynamics were analysed and showed, together with a critical discussion on the discrepancies between the Jeffcott–Laval model and experimental results. This project, that is one of the outcomes of an educational project for post-covid teaching promoted by Politecnico di Milano, involved almost 200 students in total. An anonymous evaluation survey proposed to students revealed a general appreciation of the experience, especially for the possibility of visualising important theoretical concepts. Given the positive feedback, the demonstration will be repeated in the next academic year, with some changes according to students’ suggestions
    • …
    corecore