39 research outputs found

    Uso de metodologia ativa na formação de médicos veterinários residentes para atuação no Sistema Único de Saúde: potencialidades e fragilidades.

    Get PDF
    O Programa de Residência em Área Profissional da Saúde em Medicina Veterinária da Universidade Federal Rural do Pernambuco tem como parte do objetivo capacitar residentes Médicos Veterinários por meio do treinamento em serviço para atuação na saúde pública, nas áreas de vigilância em saúde. Dessa forma, o presente estudo objetivou descrever o método utilizado na formação teórica e prática dos residentes, previamente à inserção dos mesmos no Sistema Único de Saúde (SUS), destacando suas potencialidades e fragilidades. Antes do início das atividades na Secretaria de Vigilância em Saúde e no Núcleo de Apoio à Saúde da Família, foram oferecidas duas disciplinas utilizando-se metodologias ativas: Políticas Públicas em Saúde e Integração Ensino Serviço Comunidade. Ao final de cada disciplina foi solicitado aos residentes aprovados (100% dos residentes matriculados) que relatassem suas opiniões sobre as mesmas, elencando as potencialidades e as fragilidades. As potencialidades mais relatadas foram: uso de metodologias ativas como Aprendizagem Baseada em Problemas (ABP) e estudos de casos (77,8%), leitura de artigos e elaboração de resumos (27,8%) e esclarecimentos sobre a vigilância em saúde (22,2%). Em relação as fragilidades, os residentes relataram em maior porcentagem a leitura de muitos artigos em um único dia (61,1%), dificuldade em interpretar artigos com temas diferentes da área de atuação (22,2%) e muito tempo de vivência no SUS (16,7%). Conclui-se que a metodologia ativa apresenta pontos positivos e negativos, como relatado pelos residentes, porém o modelo favorece uma forma de ensino-aprendizagem necessária à implementação dos residentes médicos veterinários para atuação no SUS

    The use of toxic baits for the suppression of Mediterranean fruit fly in mango orchards

    Get PDF
    Abstract Ceratitis capitata (Wiedemann, 1824) is an insect of major economic importance in the mango orchards of the submedium of the São Francisco River Valley, the main area of mango production and exportation in Brazil. To provide alternatives for the management of C. capitata, toxic baits based on alpha-cypermethrin (Gelsura®) and spinosad (Success® 0.02 CB) were evaluated in three commercial mango experiments during two consecutive harvests: 2016/2017 (experiment 1 - area 1) and 2017/2018 (experiment 2 -area 2 and experiment 3 - area 3). According to the results, there was a large reduction in the infestation of C. capitata after five sequential applications of the alpha-cypermethrin (6 g.ha-1) and spinosad (0.38 g.ha-1) toxic baits performed at seven-day intervals during mango fruit ripening in all experiments and years (harvest) evaluated. Compared with the untreated plots, the plots with alpha-cypermethrin and spinosad applications showed a significant reduction in the damage induced (fallen fruits and/or on trees) by C. capitata. The management of C. capitata in mango orchards can include the use of the toxic bait based on alpha-cypermethrin, which represents an alternative to rotate with spinosad toxic bait in the São Francisco River Valley

    Sistemas de variables para el análisis de la infraestructura y la operación del transporte

    Get PDF
    La ponencia realizada trata sobre la necesidad de realizar un sistema de información sobre la infraestructura y operación de los distintos modos de transporte. La lógica que sigue el trabajo es mantener una visión del transporte como una red integrada y que debe ser evaluada en conjunto lo cual permitirá determinar, en un nivel macro, las distintas conveniencias de los modos. En un primer lugar se muestra el estado actualdel sistema de transporte y los problemas encontrados. A continuación se describe el alcance del trabajo que se está realizando. Seguidamente se muestran las dificultades encontradas para estructurar un sistema de información y las posibles soluciones. Posteriormente se desarrolla, como respuesta a la problemática detectada, un sistema deinformación tabular y geográfico que permitiría conocer y evaluar con precisión la realidad del sistema de transporte nacional. También se detallan con precisión los distintos campos que contiene este sistema de información, lo que nosotros llamamos el diccionario de variables. A modo de ejemplo se muestra una tabla del modo ferroviario. Como resultado se llegó a determinar un sistema de información para cada modo de transporte, totalizando aproximadamente más de 300 variables que deberían ser relevadas mediante una metodología especifica.Se finaliza con una breve conclusión acerca de los beneficios de desarrollar estas herramientas.Facultad de Ingenierí

    Effect of different synthesis methods on the textural properties of calcium tungstate (CaWO4 ) and Its catalytic properties in the toluene oxidation.

    Get PDF
    Calcium tungstate (CaWO4) crystals were prepared by microwave-assisted hydrothermal (MAH) and polymeric precursor methods (PPM). These crystals were structurally characterized by X-ray diffraction (XRD), N2 adsorption, X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) measurements. The morphology and size of these crystals were observed by field emission scanning electron microscopy (FE-SEM). Their optical properties were investigated by ultraviolet visible (UV-Vis) absorption and photoluminescence (PL) measurements. Moreover, these materials were employed as catalysts towards gas phase toluene oxidation reaction. XRD indicates the purity of materials for both preparation methods and MAH process produced crystalline powders synthesized at lower temperatures and shorter processing time compared to the ones prepared by PPM. FE-SEM images showed particles with rounded morphology and particles in clusters dumbbells-like shaped. PL spectra exhibit a broad band covering the visible electromagnetic spectrum in the range of 360 to 750 nm. XANES and EXAFS results show that preparation method does not introduce high disorders into the structure, however the H2-TPR results indicated that the catalyst reducibility is affected by the preparation method of the samples

    A tethered ligand assay to probe SARS-CoV-2:ACE2 interactions

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are initiated by attachment of the receptor-binding domain (RBD) on the viral Spike protein to angiotensin-converting enzyme-2 (ACE2) on human host cells. This critical first step occurs in dynamic environments, where external forces act on the binding partners and avidity effects play an important role, creating an urgent need for assays that can quantitate SARS-CoV-2 interactions with ACE2 under mechanical load. Here, we introduce a tethered ligand assay that comprises the RBD and the ACE2 ectodomain joined by a flexible peptide linker. Using magnetic tweezers and atomic force spectroscopy as highly complementary single-molecule force spectroscopy techniques, we investigate the RBD:ACE2 interaction over the whole physiologically relevant force range. We combine the experimental results with steered molecular dynamics simulations and observe and assign fully consistent unbinding and unfolding events across the three techniques, enabling us to establish ACE2 unfolding as a molecular fingerprint. Measuring at forces of 2 to 5 pN, we quantify the force dependence and kinetics of the RBD:ACE2 bond in equilibrium. We show that the SARS-CoV-2 RBD:ACE2 interaction has higher mechanical stability, larger binding free energy, and a lower dissociation rate compared to SARS-CoV-1, which helps to rationalize the different infection patterns of the two viruses. By studying how free ACE2 outcompetes tethered ACE2, we show that our assay is sensitive to prevention of bond formation by external binders. We expect our results to provide a way to investigate the roles of viral mutations and blocking agents for targeted pharmaceutical intervention

    Commissioning Plan of the IFMIF-DONES Accelerator

    Get PDF
    IFMIF-DONES (International Fusion Materials Irradiation Facility- DEMO-Oriented Neutron Early Source) - a powerful neutron irradiation facility for studies and certification of materials to be used in fusion reactors - is planned as part of the European roadmap to fusion electricity. Its main goal will be to characterize and to qualify materials under irradiation in a neutron field similar to the one faced in a fusion reactor. The intense neutron source is produced by impinging deuterons, from high-power linear deuteron accelerator, on a liquid lithium curtain. The facility has accomplished the preliminary design phase and is currently in its detailed design phase. At the present stage, it is important to have a clear understanding of how the commissioning of the facility will be performed, especially the commissioning of a 5 MW CW deuteron beam, together with the lithium curtain and the beam optimization for the neutron irradiation. In this contribution, the present plans for the hardware and beam commissioning of the accelerator will be given, focusing on the most critical aspects of the tiered approach and on the integration of the procedure with the lithium and tests systems

    A Tethered Ligand Assay to Probe SARS-CoV-2:ACE2 Interactions

    Get PDF
    SARS-CoV-2 infections are initiated by attachment of the receptor-binding domain (RBD) on the viral Spike protein to angiotensin-converting enzyme-2 (ACE2) on human host cells. This critical first step occurs in dynamic environments, where external forces act on the binding partners and multivalent interactions play critical roles, creating an urgent need for assays that can quantitate SARS-CoV-2 interactions with ACE2 under mechanical load and in defined geometries. Here, we introduce a tethered ligand assay that comprises the RBD and the ACE2 ectodomain joined by a flexible peptide linker. Using magnetic tweezers and atomic force spectroscopy as highly complementary single-molecule force spectroscopy techniques, we investigate the RBD:ACE2 interaction over the whole physiologically relevant force range. We combine the experimental results with steered molecular dynamics simulations and observe and assign fully consistent unbinding and unfolding events across the three techniques, enabling us to establish ACE2 unfolding as a molecular fingerprint. Measuring at forces of 2-5 pN, we quantify the force dependence and kinetics of the RBD:ACE2 bond in equilibrium. We show that the SARS-CoV-2 RBD:ACE2 interaction has higher mechanical stability, larger binding free energy, and a lower dissociation rate in comparison to SARS-CoV-1, which helps to rationalize the different infection patterns of the two viruses. By studying how free ACE2 outcompetes tethered ACE2, we show that our assay is sensitive to prevention of bond formation by external binders. We expect our results to provide a novel way to investigate the roles of mutations and blocking agents for targeted pharmaceutical intervention.N

    A tethered ligand assay to probe SARS-CoV-2:ACE2 interactions

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are initiated by attachment of the receptor-binding domain (RBD) on the viral Spike protein to angiotensin-converting enzyme-2 (ACE2) on human host cells. This critical first step occurs in dynamic environments, where external forces act on the binding partners and avidity effects play an important role, creating an urgent need for assays that can quantitate SARS-CoV-2 interactions with ACE2 under mechanical load. Here, we introduce a tethered ligand assay that comprises the RBD and the ACE2 ectodomain joined by a flexible peptide linker. Using magnetic tweezers and atomic force spectroscopy as highly complementary single-molecule force spectroscopy techniques, we investigate the RBD:ACE2 interaction over the whole physiologically relevant force range. We combine the experimental results with steered molecular dynamics simulations and observe and assign fully consistent unbinding and unfolding events across the three techniques, enabling us to establish ACE2 unfolding as a molecular fingerprint. Measuring at forces of 2 to 5 pN, we quantify the force dependence and kinetics of the RBD:ACE2 bond in equilibrium. We show that the SARS-CoV-2 RBD:ACE2 interaction has higher mechanical stability, larger binding free energy, and a lower dissociation rate compared to SARS-CoV-1, which helps to rationalize the different infection patterns of the two viruses. By studying how free ACE2 outcompetes tethered ACE2, we show that our assay is sensitive to prevention of bond formation by external binders. We expect our results to provide a way to investigate the roles of viral mutations and blocking agents for targeted pharmaceutical intervention.This study was supported by German Research Foundation Projects 386143268 and 111166240, a Human Frontier Science ProgramCross Disciplinary Fellowship (LT000395/2020C) and European Molecular Biology Organization Non-Stipendiary long-term fellowship (ALTF 1047-2019) to L.F.M., and the Physics Department of LMU Munich. R.C.B. and P.S.F.C.G. are supported by start-up funds provided by Auburn University, and D.L. acknowledges support from the Spanish Ministry of Science, Innovation and Universities for the Spanish State Research Agency Retos Grant RTI2018- 099318-B-I00, cofunded by the European Regional Development Fund.Peer reviewe
    corecore