659 research outputs found

    Disorder Averaging and Finite Size Scaling

    Full text link
    We propose a new picture of the renormalization group (RG) approach in the presence of disorder, which considers the RG trajectories of each random sample (realization) separately instead of the usual renormalization of the averaged free energy. The main consequence of the theory is that the average over randomness has to be taken after finding the critical point of each realization. To demonstrate these concepts, we study the finite-size scaling properties of the two-dimensional random-bond Ising model. We find that most of the previously observed finite-size corrections are due to the sample-to-sample fluctuation of the critical temperature and scaling is more adequate in terms of the new scaling variables.Comment: 4 pages, 6 figures include

    Tenacibaculum adriaticum sp. nov., from bryozoans in the Adriatic Sea

    Get PDF
    A rod-shaped, translucent yellow-pigmented, Gram-negative bacterium, strain B390(T), was isolated from the bryozoan Schizobrachiella sanguinea collected in the Adriatic Sea, near Rovinj, Croatia. 16S rRNA gene sequence analysis indicated affiliation to the genus Tenacibaculum, with sequence similarity levels of 94.8-97.3 % to type strains of species with validly published names. It grew at 5-34 degrees C, with optimal growth at 18-26 degrees C, and only in the presence of NaCl or sea salts. In contrast to other type strains of the genus, strain B390(T) was able to hydrolyse aesculin. The predominant menaquinone was MK-6 and major fatty acids were iso-C-15:0, iso-C-15:0 3-OH and iSO-C-15:1. The DNA G + C content was 31.6 mol%. DNA-DNA hybridization and comparative physiological tests were performed with type strains Tenacibaculum aestuarii JCM 13491(T) and Tenacibaculum lutimaris DSM 16505 T, since they exhibit 16S rRNA gene sequence similarities above 97%. These data, as well as phylogenetic analyses, suggest that strain B390(T) (=DSM 18961(T) =JCM 14633(T)) should be classified as the type strain of a novel species within the genus Tenacibaculum, for which the name Tenacibaculum adriaticum sp. nov. is proposed

    The Effects of Explicit and Implicit Interaction on User Experiences in a Mixed Reality Installation: The Synthetic Oracle

    Get PDF
    Virtual and mixed reality environments (VMRE) often imply full-body human-computer interaction scenarios. We used a public multimodal mixed reality installation, the Synthetic Oracle, and a between-groups design to study the effects of implicit (e.g., passively walking) or explicit (e.g., pointing) interaction modes on the users' emotional and engagement experiences, and we assessed it using questionnaires. Additionally, real-time arm motion data was used to categorize the user behavior and to provide interaction possibilities for the explicit interaction group. The results show that the online behavior classification corresponded well to the users' interaction mode. In addition, contrary to the explicit interaction, the engagement ratings from implicit users were positively correlated with a valence but were uncorrelated with arousal ratings. Interestingly, arousal levels were correlated with different behaviors displayed by the visitors depending on the interaction mode. Hence, this study confirms that the activity level and behavior of users modulates their experience, and that in turn, the interaction mode modulates their behavior. Thus, these results show the importance of the selected interaction mode when designing users' experiences in VMRE

    On the Finite Size Scaling in Disordered Systems

    Full text link
    The critical behavior of a quenched random hypercubic sample of linear size LL is considered, within the ``random-TcT_{c}'' field-theoretical mode, by using the renormalization group method. A finite-size scaling behavior is established and analyzed near the upper critical dimension d=4ϵd=4-\epsilon and some universal results are obtained. The problem of self-averaging is clarified for different critical regimes.Comment: 21 pages, 2 figures, submitted to the Physcal Review

    An artificial moth: Chemical source localization using a robot based neuronal model of moth optomotor anemotactic search

    Get PDF
    Robots have been used to model nature, while nature in turn can contribute to the real-world artifacts we construct. One particular domain of interest is chemical search where a number of efforts are underway to construct mobile chemical search and localization systems. We report on a project that aims at constructing such a system based on our understanding of the pheromone communication system of the moth. Based on an overview of the peripheral processing of chemical cues by the moth and its role in the organization of behavior we emphasize the multimodal aspects of chemical search, i.e. optomotor anemotactic chemical search. We present a model of this behavior that we test in combination with a novel thin metal oxide sensor and custom build mobile robots. We show that the sensor is able to detect the odor cue, ethanol, under varying flow conditions. Subsequently we show that the standard model of insect chemical search, consisting of a surge and cast phases, provides for robust search and localization performance. The same holds when it is augmented with an optomotor collision avoidance model based on the Lobula Giant Movement Detector (LGMD) neuron of the locust. We compare our results to others who have used the moth as inspiration for the construction of odor robot

    Two-Dimensional Quantum XY Model with Ring Exchange and External Field

    Full text link
    We present the zero-temperature phase diagram of a square lattice quantum spin 1/2 XY model with four-site ring exchange in a uniform external magnetic field. Using quantum Monte Carlo techniques, we identify various quantum phase transitions between the XY-order, striped or valence bond solid, staggered Neel antiferromagnet and fully polarized ground states of the model. We find no evidence for a quantum spin liquid phase.Comment: 4 pages, 4 figure

    Crossover and self-averaging in the two-dimensional site-diluted Ising model

    Full text link
    Using the newly proposed probability-changing cluster (PCC) Monte Carlo algorithm, we simulate the two-dimensional (2D) site-diluted Ising model. Since we can tune the critical point of each random sample automatically with the PCC algorithm, we succeed in studying the sample-dependent Tc(L)T_c(L) and the sample average of physical quantities at each Tc(L)T_c(L) systematically. Using the finite-size scaling (FSS) analysis for Tc(L)T_c(L), we discuss the importance of corrections to FSS both in the strong-dilution and weak-dilution regions. The critical phenomena of the 2D site-diluted Ising model are shown to be controlled by the pure fixed point. The crossover from the percolation fixed point to the pure Ising fixed point with the system size is explicitly demonstrated by the study of the Binder parameter. We also study the distribution of critical temperature Tc(L)T_c(L). Its variance shows the power-law LL dependence, LnL^{-n}, and the estimate of the exponent nn is consistent with the prediction of Aharony and Harris [Phys. Rev. Lett. {\bf 77}, 3700 (1996)]. Calculating the relative variance of critical magnetization at the sample-dependent Tc(L)T_c(L), we show that the 2D site-diluted Ising model exhibits weak self-averaging.Comment: 6 pages including 6 eps figures, RevTeX, to appear in Phys. Rev.

    Qubits as Parafermions

    Get PDF
    Qubits are neither fermions nor bosons. A Fock space description of qubits leads to a mapping from qubits to parafermions: particles with a hybrid boson-fermion quantum statistics. We study this mapping in detail, and use it to provide a classification of the algebras of operators acting on qubits. These algebras in turn classify the universality of different classes of physically relevant qubit-qubit interaction Hamiltonians. The mapping is further used to elucidate the connections between qubits, bosons, and fermions. These connections allow us to share universality results between the different particle types. Finally, we use the mapping to study the quantum computational power of certain anisotropic exchange Hamiltonians. In particular, we prove that the XY model with nearest-neighbor interactions only is not computationally universal. We also generalize previous results about universal quantum computation with encoded qubits to codes with higher rates.Comment: 17 pages, no figures. v3: This version to appear in J. Math. Phys., special issue on quantum computatio

    Destruction of diagonal and off-diagonal long range order by disorder in two-dimensional hard core boson systems

    Full text link
    We use quantum Monte Carlo simulations to study the effect of disorder, in the form of a disordered chemical potential, on the phase diagram of the hard core bosonic Hubbard model in two dimensions. We find numerical evidence that in two dimensions, no matter how weak the disorder, it will always destroy the long range density wave order (checkerboard solid) present at half filling and strong nearest neighbor repulsion and replace it with a bose glass phase. We study the properties of this glassy phase including the superfluid density, energy gaps and the full Green's function. We also study the possibility of other localized phases at weak nearest neighbor repulsion, i.e. Anderson localization. We find that such a phase does not truly exist: The disorder must exceed a threshold before the bosons (at weak nn repulsion) are localized. The phase diagram for hard core bosons with disorder cannot be obtained easily from the soft core phase diagram discussed in the literature.Comment: 7 pages, 10 eps figures include

    Analytical and numerical study of hardcore bosons in two dimensions

    Full text link
    We study various properties of bosons in two dimensions interacting only via onsite hardcore repulsion. In particular, we use the lattice spin-wave approximation to calculate the ground state energy, the density, the condensate density and the superfluid density in terms of the chemical potential. We also calculate the excitation spectrum, ω(k)\omega({\bf k}). In addition, we performed high precision numerical simulations using the stochastic series expansion algorithm. We find that the spin-wave results describe extremely well the numerical results over the {\it whole} density range 0ρ10\leq \rho \leq 1. We also compare the lattice spin-wave results with continuum results obtained by summing the ladder diagrams at low density. We find that for ρ0.1\rho \leq 0.1 there is good agreement, and that the difference between the two methods vanishes as ρ2\rho^2 for ρ0\rho \to 0. This offers the possibility of obtaining precise continuum results by taking the continuum limit of the spin-wave results for all densities. Finaly, we studied numerically the finite temperature phase transition for the entire density range and compared with low density predictions.Comment: 10 pages, 8 figures include
    corecore