33,806 research outputs found

    Holographic classification of Topological Insulators and its 8-fold periodicity

    Full text link
    Using generic properties of Clifford algebras in any spatial dimension, we explicitly classify Dirac hamiltonians with zero modes protected by the discrete symmetries of time-reversal, particle-hole symmetry, and chirality. Assuming the boundary states of topological insulators are Dirac fermions, we thereby holographically reproduce the Periodic Table of topological insulators found by Kitaev and Ryu. et. al, without using topological invariants nor K-theory. In addition we find candidate Z_2 topological insulators in classes AI, AII in dimensions 0,4 mod 8 and in classes C, D in dimensions 2,6 mod 8.Comment: 19 pages, 4 Table

    The pion charge radius from charged pion electroproduction

    Get PDF
    We analyze a low-energy theorem of threshold pion electroproduction which allows one to determine the charge radius of the pion. We show that at the same order where the radius appears, pion loops induce a correction to the momentum dependence of the longitudinal dipole amplitude L0+()L_{0+}^{(-)}. This model-independent correction amounts to an increase of the pion charge radius squared from the electroproduction data by about 0.26~fm2^2. It sheds light on the apparent discrepancy between the recent determination of the pion radius from electroproduction data and the one based on pion-electron scattering.Comment: 3 pp, REVTeX, uses eps

    Staggered Chiral Perturbation Theory and the Fourth-Root Trick

    Full text link
    Staggered chiral perturbation theory (schpt) takes into account the "fourth-root trick" for reducing unwanted (taste) degrees of freedom with staggered quarks by multiplying the contribution of each sea quark loop by a factor of 1/4. In the special case of four staggered fields (four flavors, nF=4), I show here that certain assumptions about analyticity and phase structure imply the validity of this procedure for representing the rooting trick in the chiral sector. I start from the observation that, when the four flavors are degenerate, the fourth root simply reduces nF=4 to nF=1. One can then treat nondegenerate quark masses by expanding around the degenerate limit. With additional assumptions on decoupling, the result can be extended to the more interesting cases of nF=3, 2, or 1. A apparent paradox associated with the one-flavor case is resolved. Coupled with some expected features of unrooted staggered quarks in the continuum limit, in particular the restoration of taste symmetry, schpt then implies that the fourth-root trick induces no problems (for example, a violation of unitarity that persists in the continuum limit) in the lowest energy sector of staggered lattice QCD. It also says that the theory with staggered valence quarks and rooted staggered sea quarks behaves like a simple, partially-quenched theory, not like a "mixed" theory in which sea and valence quarks have different lattice actions. In most cases, the assumptions made in this paper are not only sufficient but also necessary for the validity of schpt, so that a variety of possible new routes for testing this validity are opened.Comment: 39 pages, 3 figures. v3: minor changes: improved explanations and less tentative discussion in several places; corresponds to published versio

    Finite-Temperature Phase Structure of Lattice QCD with the Wilson Quark Action for Two and Four Flavors

    Get PDF
    We present further analyses of the finite-temperature phase structure of lattice QCD with the Wilson quark action based on spontaneous breakdown of parity-flavor symmetry. Results are reported on (i) an explicit demonstration of spontaneous breakdown of parity-flavor symmetry beyond the critical line, (ii) phase structure and order of chiral transition for the case of Nf=4N_f=4 flavors, and (iii) approach toward the continuum limit.Comment: Poster presented at LATTICE96(finite temperature); 4 pages, Latex, uses espcrc2 and epsf, seven ps figures include

    Heavy-Light Semileptonic Decays in Staggered Chiral Perturbation Theory

    Full text link
    We calculate the form factors for the semileptonic decays of heavy-light pseudoscalar mesons in partially quenched staggered chiral perturbation theory (\schpt), working to leading order in 1/mQ1/m_Q, where mQm_Q is the heavy quark mass. We take the light meson in the final state to be a pseudoscalar corresponding to the exact chiral symmetry of staggered quarks. The treatment assumes the validity of the standard prescription for representing the staggered ``fourth root trick'' within \schpt by insertions of factors of 1/4 for each sea quark loop. Our calculation is based on an existing partially quenched continuum chiral perturbation theory calculation with degenerate sea quarks by Becirevic, Prelovsek and Zupan, which we generalize to the staggered (and non-degenerate) case. As a by-product, we obtain the continuum partially quenched results with non-degenerate sea quarks. We analyze the effects of non-leading chiral terms, and find a relation among the coefficients governing the analytic valence mass dependence at this order. Our results are useful in analyzing lattice computations of form factors BπB\to\pi and DKD\to K when the light quarks are simulated with the staggered action.Comment: 53 pages, 8 figures, v2: Minor correction to the section on finite volume effects, and typos fixed. Version to be published in Phys. Rev.

    Lattice Calculation of Heavy-Light Decay Constants with Two Flavors of Dynamical Quarks

    Get PDF
    We present results for fBf_B, fBsf_{B_s}, fDf_D, fDsf_{D_s} and their ratios in the presence of two flavors of light sea quarks (Nf=2N_f=2). We use Wilson light valence quarks and Wilson and static heavy valence quarks; the sea quarks are simulated with staggered fermions. Additional quenched simulations with nonperturbatively improved clover fermions allow us to improve our control of the continuum extrapolation. For our central values the masses of the sea quarks are not extrapolated to the physical uu, dd masses; that is, the central values are "partially quenched." A calculation using "fat-link clover" valence fermions is also discussed but is not included in our final results. We find, for example, fB=190(7)(17+24)(2+11)(0+8)f_B = 190 (7) (^{+24}_{-17}) (^{+11}_{-2}) (^{+8}_{-0}) MeV, fBs/fB=1.16(1)(2)(2)(0+4)f_{B_s}/f_B = 1.16 (1) (2) (2) (^{+4}_{-0}), fDs=241(5)(26+27)(4+9)(0+5)f_{D_s} = 241 (5) (^{+27}_{-26}) (^{+9}_{-4}) (^{+5}_{-0}) MeV, and fB/fDs=0.79(2)(4+5)(3)(0+5)f_{B}/f_{D_s} = 0.79 (2) (^{+5}_{-4}) (3) (^{+5}_{-0}), where in each case the first error is statistical and the remaining three are systematic: the error within the partially quenched Nf=2N_f=2 approximation, the error due to the missing strange sea quark and to partial quenching, and an estimate of the effects of chiral logarithms at small quark mass. The last error, though quite significant in decay constant ratios, appears to be smaller than has been recently suggested by Kronfeld and Ryan, and Yamada. We emphasize, however, that as in other lattice computations to date, the lattice u,du,d quark masses are not very light and chiral log effects may not be fully under control.Comment: Revised version includes an attempt to estimate the effects of chiral logarithms at small quark mass; central values are unchanged but one more systematic error has been added. Sections III E and V D are completely new; some changes for clarity have also been made elsewhere. 82 pages; 32 figure

    A precise determination of T_c in QCD from scaling

    Get PDF
    Existing lattice data on the QCD phase transition are analyzed in renormalized perturbation theory. In quenched QCD it is found that T_c scales for lattices with only 3 time slices, and that T_c/Lambda_msbar=1.15 \pm 0.05. A preliminary estimate in QCD with two flavours of dynamical quarks shows that this ratio depends on the quark mass. For realistic quark masses we estimate T_c/Lambda_msbar=0.49 \pm 0.02. We also investigate the equation of state in quenched QCD at 1-loop order in renormalised perturbation theory.Comment: 7 pages, 5 eps figures; improved error analysis yields smaller errors on T_

    Chiral Prediction for the πN\pi N Scattering Length aa^- to Order O(Mπ4){\cal O}(M_\pi^4)

    Full text link
    We evaluate the S-wave pion--nucleon scattering length aa^- in the framework of heavy baryon chiral perturbation theory up--to--and--including terms of order Mπ4M_\pi^4. We show that the order Mπ4M_\pi^4 piece of the isovector amplitude at threshold, TthrT^-_{\rm thr}, vanishes exactly. We predict for the isovector scattering length, 0.088Mπ+1a0.096Mπ+10.088 \, M_{\pi^+}^{-1} \le a^- \le 0.096 \, M_{\pi^+}^{-1}.Comment: 5 pp, LaTeX file, 2 figures (appended as separate compressed tar file, amin.uu

    Nonlocal Scalar Quantum Field Theory: Functional Integration, Basis Functions Representation and Strong Coupling Expansion

    Full text link
    Nonlocal QFT of one-component scalar field φ\varphi in DD-dimensional Euclidean spacetime is considered. The generating functional (GF) of complete Green functions Z\mathcal{Z} as a functional of external source jj, coupling constant gg, and spatial measure dμd\mu is studied. An expression for GF Z\mathcal{Z} in terms of the abstract integral over the primary field φ\varphi is given. An expression for GF Z\mathcal{Z} in terms of integrals over the primary field and separable Hilbert space (HS) is obtained by means of a separable expansion of the free theory inverse propagator L^\hat{L} over the separable HS basis. The classification of functional integration measures D[φ]\mathcal{D}\left[\varphi\right] is formulated, according to which trivial and two nontrivial versions of GF Z\mathcal{Z} are obtained. Nontrivial versions of GF Z\mathcal{Z} are expressed in terms of 11-norm and 00-norm, respectively. The definition of the 00-norm generator Ψ\varPsi is suggested. Simple cases of sharp and smooth generators are considered. Expressions for GF Z\mathcal{Z} in terms of integrals over the separable HS with new integrands are obtained. For polynomial theories φ2n,n=2,3,4,,\varphi^{2n},\, n=2,3,4,\ldots, and for the nonpolynomial theory sinh4φ\sinh^{4}\varphi, integrals over the separable HS in terms of a power series over the inverse coupling constant 1/g1/\sqrt{g} for both norms (11-norm and 00-norm) are calculated. Critical values of model parameters when a phase transition occurs are found numerically. A generalization of the theory to the case of the uncountable integral over HS is formulated. A comparison of two GFs Z\mathcal{Z}, one in the case of uncountable HS integral and one obtained using the Parseval-Plancherel identity, is given.Comment: 26 pages, 2 figures; v2: significant additions in the text; prepared for the special issue "QCD and Hadron Structure" of the journal Particles; v3: minimal corrections; v4: paragraphs added related to Reviewer comment

    Matrix elements relevant for Delta I=1/2 rule and epsilon-prime from Lattice QCD with staggered fermions

    Full text link
    We perform a study of matrix elements relevant for the Delta I=1/2 rule and the direct CP-violation parameter epsilon-prime from first principles by computer simulation in Lattice QCD. We use staggered (Kogut-Susskind) fermions, and employ the chiral perturbation theory method for studying K to 2 Pi decays. Having obtained a reasonable statistical accuracy, we observe an enhancement of the Delta I=1/2 amplitude, consistent with experiment within our large systematic errors. Finite volume and quenching effects have been studied and were found small compared to noise. The estimates of epsilon-prime are hindered by large uncertainties associated with operator matching. In this paper we explain the simulation method, present the results and address the systematic uncertainties.Comment: 40 pages, 17 figures, LATEX with epsf, to be submitted to Phys. Rev. D. Minor errors are corrected, some wording and notation change
    corecore