95 research outputs found

    Cis- and Trans-Acting Elements Regulate the Mouse Psmb9 Meiotic Recombination Hotspot

    Get PDF
    In most eukaryotes, the prophase of the first meiotic division is characterized by a high level of homologous recombination between homologous chromosomes. Recombination events are not distributed evenly within the genome, but vary both locally and at large scale. Locally, most recombination events are clustered in short intervals (a few kilobases) called hotspots, separated by large intervening regions with no or very little recombination. Despite the importance of regulating both the frequency and the distribution of recombination events, the genetic factors controlling the activity of the recombination hotspots in mammals are still poorly understood. We previously characterized a recombination hotspot located close to the Psmb9 gene in the mouse major histocompatibility complex by sperm typing, demonstrating that it is a site of recombination initiation. With the goal of uncovering some of the genetic factors controlling the activity of this initiation site, we analyzed this hotspot in both male and female germ lines and compared the level of recombination in different hybrid mice. We show that a haplotype-specific element acts at distance and in trans to activate about 2,000-fold the recombination activity at Psmb9. Another haplotype-specific element acts in cis to repress initiation of recombination, and we propose this control to be due to polymorphisms located within the initiation zone. In addition, we describe subtle variations in the frequency and distribution of recombination events related to strain and sex differences. These findings show that most regulations observed act at the level of initiation and provide the first analysis of the control of the activity of a meiotic recombination hotspot in the mouse genome that reveals the interactions of elements located both in and outside the hotspot

    Mutation of the Mouse Syce1 Gene Disrupts Synapsis and Suggests a Link between Synaptonemal Complex Structural Components and DNA Repair

    Get PDF
    In mammals, the synaptonemal complex is a structure required to complete crossover recombination. Although suggested by cytological work, in vivo links between the structural proteins of the synaptonemal complex and the proteins of the recombination process have not previously been made. The central element of the synaptonemal complex is traversed by DNA at sites of recombination and presents a logical place to look for interactions between these components. There are four known central element proteins, three of which have previously been mutated. Here, we complete the set by creating a null mutation in the Syce1 gene in mouse. The resulting disruption of synapsis in these animals has allowed us to demonstrate a biochemical interaction between the structural protein SYCE2 and the repair protein RAD51. In normal meiosis, this interaction may be responsible for promoting homologous synapsis from sites of recombination

    Genome-Wide Control of the Distribution of Meiotic Recombination

    Get PDF
    Meiotic recombination events are not randomly distributed in the genome but occur in specific regions called recombination hotspots. Hotspots are predicted to be preferred sites for the initiation of meiotic recombination and their positions and activities are regulated by yet-unknown controls. The activity of the Psmb9 hotspot on mouse Chromosome 17 (Chr 17) varies according to genetic background. It is active in strains carrying a recombinant Chr 17 where the proximal third is derived from Mus musculus molossinus. We have identified the genetic locus required for Psmb9 activity, named Dsbc1 for Double-strand break control 1, and mapped this locus within a 6.7-Mb region on Chr 17. Based on cytological analysis of meiotic DNA double-strand breaks (DSB) and crossovers (COs), we show that Dsbc1 influences DSB and CO, not only at Psmb9, but in several other regions of Chr 17. We further show that CO distribution is also influenced by Dsbc1 on Chrs 15 and 18. Finally, we provide direct molecular evidence for the regulation in trans mediated by Dsbc1, by showing that it controls the CO activity at the Hlx1 hotspot on Chr 1. We thus propose that Dsbc1 encodes for a trans-acting factor involved in the specification of initiation sites of meiotic recombination genome wide in mice

    Dicer1 Depletion in Male Germ Cells Leads to Infertility Due to Cumulative Meiotic and Spermiogenic Defects

    Get PDF
    Background: Spermatogenesis is a complex biological process that requires a highly specialized control of gene expression. In the past decade, small non-coding RNAs have emerged as critical regulators of gene expression both at the transcriptional and post-transcriptional level. DICER1, an RNAse III endonuclease, is essential for the biogenesis of several classes of small RNAs, including microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), but is also critical for the degradation of toxic transposable elements. In this study, we investigated to which extent DICER1 is required for germ cell development and the progress of spermatogenesis in mice.Principal Findings: We show that the selective ablation of Dicer1 at the early onset of male germ cell development leads to infertility, due to multiple cumulative defects at the meiotic and post-meiotic stages culminating with the absence of functional spermatozoa. Alterations were observed in the first spermatogenic wave and include delayed progression of spermatocytes to prophase I and increased apoptosis, resulting in a reduced number of round spermatids. The transition from round to mature spermatozoa was also severely affected, since the few spermatozoa formed in mutant animals were immobile and misshapen, exhibiting morphological defects of the head and flagellum. We also found evidence that the expression of transposable elements of the SINE family is up-regulated in Dicer1-depleted spermatocytes.Conclusions/Significance: Our findings indicate that DICER1 is dispensable for spermatogonial stem cell renewal and mitotic proliferation, but is required for germ cell differentiation through the meiotic and haploid phases of spermatogenesis

    The Molecular Chaperone Hsp90α Is Required for Meiotic Progression of Spermatocytes beyond Pachytene in the Mouse

    Get PDF
    The molecular chaperone Hsp90 has been found to be essential for viability in all tested eukaryotes, from the budding yeast to Drosophila. In mammals, two genes encode the two highly similar and functionally largely redundant isoforms Hsp90α and Hsp90β. Although they are co-expressed in most if not all cells, their relative levels vary between tissues and during development. Since mouse embryos lacking Hsp90β die at implantation, and despite the fact that Hsp90 inhibitors being tested as anti-cancer agents are relatively well tolerated, the organismic functions of Hsp90 in mammals remain largely unknown. We have generated mouse lines carrying gene trap insertions in the Hsp90α gene to investigate the global functions of this isoform. Surprisingly, mice without Hsp90α are apparently normal, with one major exception. Mutant male mice, whose Hsp90β levels are unchanged, are sterile because of a complete failure to produce sperm. While the development of the male reproductive system appears to be normal, spermatogenesis arrests specifically at the pachytene stage of meiosis I. Over time, the number of spermatocytes and the levels of the meiotic regulators and Hsp90 interactors Hsp70-2, NASP and Cdc2 are reduced. We speculate that Hsp90α may be required to maintain and to activate these regulators and/or to disassemble the synaptonemal complex that holds homologous chromosomes together. The link between fertility and Hsp90 is further supported by our finding that an Hsp90 inhibitor that can cross the blood-testis barrier can partially phenocopy the genetic defects

    SPO11-Independent DNA Repair Foci and Their Role in Meiotic Silencing

    Get PDF
    In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI). A more general mechanism, named meiotic silencing of unsynapsed chromatin (MSUC), is activated when autosomes fail to synapse. In the absence of SPO11, many chromosomal regions remain unsynapsed, but MSUC takes place only on part of the unsynapsed chromatin. We asked if spontaneous DSBs occur in meiocytes that lack a functional SPO11 protein, and if these might be involved in targeting the MSUC response to part of the unsynapsed chromatin. We generated mice carrying a point mutation that disrupts the predicted catalytic site of SPO11 (Spo11YF/YF), and blocks its DSB-inducing activity. Interestingly, we observed foci of proteins involved in the processing of DNA damage, such as RAD51, DMC1, and RPA, both in Spo11YF/YFand Spo11 knockout meiocytes. These foci preferentially localized to the areas that undergo MSUC and form the so-called pseudo XY body. In SPO11-deficient oocytes, the number

    Determinants of anti-PD-1 response and resistance in clear cell renal cell carcinoma

    Get PDF

    Modifications de la chromatine associées à l'initiation de la recombinaison méiotique, chez la souris

    No full text
    La méiose est une étape de la différenciation germinale qui permet la formation des gamètes. Elle est composée de deux divisions successives. La ségrégation des chromosomes homologues à la première division nécessite des connexions entre homologues, mises en place par des événements de crossing-over (CO). Les CO augmentent également la diversité génétique, et leur fréquence et leur distribution sont étroitement régulées. Ils sont générés par un mécanisme de formation et réparation de cassures double brins de l'ADN (CDBs), catalysées par la protéine SPO11 et préférentiellement localisées dans des régions de 1-2 kb appelées points chauds de recombinaison méiotique. Une question majeure est de comprendre comment sont régulés ces CO, ce qui détermine leur fréquence et leur distribution, car toute altération de cette régulation peut conduire à des anomalies chromosomiques graves.Dans ce travail de thèse, pour la première fois chez les mammifères, nous avons montré que des modifications de la chromatine sont associées à l'initiation de la recombinaison méiotique (formation des CDBs par SPO11). Ces résultats ont été obtenus par des analyses d'immunoprécipitation de chromatine (ChIP) sur des spermatocytes purifiés ou non, isolés de différentes lignées de souris. Une des modifications associées à l'activité de deux points chauds testés est la triméthylation de la lysine 4 de l'histone H3 (H3K4Me3). Une analyse fonctionnelle et temporelle de cette modification a permis de montrer qu'elle ne dépend pas de SPO11 et apparaît avant la formation de CDBs. Nous avons montré ici que c'est la protéine PRDM9, récemment identifiée comme un déterminant majeur des points chauds de recombinaison chez les mammifères et possédant une activité méthyltransférase, qui appose H3K4Me3. Nous proposons un modèle où H3K4Me3 et d'autres caractéristiques inconnues constitueraient un substrat pour la machinerie d'initiation et recruteraient SPO11 en des points précis du génome, qui deviendront des points chauds.Meiosis is a specialized cell division to produce haploid gametes from a diploid cell. It segregates parental genomes by two successive divisions. The faithful segregation of homologous chromosomes is achieved during the first unique division via formation of crossovers (COs). COs establish physical connections between homologs by the reciprocal exchange of genetic material and require the formation and subsequent repair of SPO11-dependent DNA double-strand breaks (DSBs). Studies in many organisms revealed that COs are distributed in highly localized regions (1-2Kb) of genomes called recombination hotspots. The mechanisms of COs regulation are elusive and a main question in the field is to understand how the frequency and distribution of CO are regulated, because either absence or defects of recombination can lead to aneuploidy or reduced fertility. In the present study, for the very first time in mammals, we investigate whether recombination hotspots are associated with any chromatin modifications. We performed chromatin immunoprecipitation (ChIP) on spermatocytes isolated from different mice strains harbouring either active or inactive hotspots. Comparison of hot and cold spots revealed that a specific histone modification i.e. trimethylation of the lysine 4 of histone H3 (H3K4Me3) is enriched at two tested hotspots in mice. Temporal and functional analysis show that H3K4Me3 is not dependent on SPO11 and appears before DSBs formation. Furthermore, we demonstrate here that H3K4Me3 is methylated via the histone methyltransferase activity of PRDM9, recently identified as a major determinant of recombination hotspots in mammals. We propose a model that H3K4Me3 and other unknown chromatin features may specify recruitment of SPO11 initiation machinery to initiate meiotic recombination at the hotspots.MONTPELLIER-BU Médecine UPM (341722108) / SudocSudocFranceF

    SPO11: une activité de coupure de l’ADN indispensable à la méiose

    No full text
    La recombinaison entre chromosomes homologues est un processus essentiel dont le rôle mécanique est d’assurer la ségrégation réductionnelle des chromosomes lors de la première division de méiose. La protéine Spo11 est responsable du déclenchement de la recombinaison méiotique par formation de cassures double-brin de l’ADN, et cette activité est apparentée à celle des ADN topo-isomérases de type II. Spo11 et sa fonction ont été conservées au cours de l’évolution, de la levure à l’homme: chez tous les eucaryotes testés, les mutants spo11 sont déficients pour la recombinaison méiotique et ont une fertilité réduite, voire nulle. Cette stérilité reflète selon les cas un dysfonctionnement de la ségrégation des chromosomes ou un arrêt de la différenciation germinale. L’étude phénotypique des différents mutants met en évidence un ensemble de régulations complexes entre la recombinaison et d’autres événements de la prophase de méiose, tels que l’appariement des chromosomes et le contrôle du cycle cellulaire méiotique.Recombination between homologous chromosomes during meiosis is an essential process, which mechanistical function is to ensure the reductional segregation of chromosomes at the first meiotic division. SPO11, one of the key genes directly involved in this process, has been at the origin of considerable interest for the past five years, for several reasons. First, Spo11 is responsible for the initiation of meiotic recombination through the formation of DNA double-strand breaks by a type II DNA topoisomerase-like activity. Moreover, Spo11, and its function, have been conserved through evolution, from yeasts to human, as demonstrated by the identification of members of the Spo11 protein family and the analyses of corresponding mutants. Indeed, for every eukaryote that has been tested, spo11 mutants are deficient for meiotic recombination and are partially or completely sterile. Depending on the species, this reduced fertility reflects either a defect in chromosome segregation, or an arrest response in germ cell differentiation. Similarities and differences from species to species uncover a complex set of regulations that coordinate recombination with other events of meiotic prophase, such as chromosome pairing and meiotic cell cycle
    corecore