2,900 research outputs found

    Monophyly of brachiopods and phoronids: reconciliation of molecular evidence with Linnaean classification (the subphylum Phoroniformea nov.)

    Get PDF
    Molecular phylogenetic analyses of aligned 18S rDNA gene sequences from articulate and inarticulate brachiopods representing all major extant lineages, an enhanced set of phoronids and several unrelated protostome taxa, confirm previous indications that in such data, brachiopod and phoronids form a well-supported clade that (on previous evidence) is unambiguously affiliated with protostomes rather than deuterostomes. Within the brachiopod-phoronid clade, an association between phoronids and inarticulate brachiopods is moderately well supported, whilst a close relationship between phoronids and craniid inarticulates is weakly indicated. Brachiopod-phoronid monophyly is reconciled with the most recent Linnaean classification of brachiopods by abolition of the phylum Phoronida and rediagnosis of the phylum Brachiopoda to include tubiculous, shell-less forms. Recognition that brachiopods and phoronids are close genealogical allies of protostome phyla such as molluscs and annelids, but are much more distantly related to deuterostome phyla such as echinoderms and chordates, implies either (or both) that the morphology and ontogeny of blastopore, mesoderm and coelom formation have been widely misreported or misinterpreted, or that these characters have been subject to extensive homoplasy. This inference, if true, undermines virtually all morphology-based reconstructions of phylogeny made during the past century or more

    Relations Among Correlation Functions in the High Temperature Phase of QCD with Broken SU(3)

    Get PDF
    Group-theoretic arguments are used to determine the dependence of two-point correlators of quark bilinears on the current quark masses. The leading difference between π\pi and δ\delta correlators is found to be of order msm_s times a U(1)A_{\scriptscriptstyle A}-violating correlator. These general arguments are consistent with Schaefer's observation that if U(1)A_{\scriptscriptstyle A} violation persists to high enough temperatures then the strange η\eta can be lighter than the non-strange one.Comment: 8 page

    Pion and kaon physics with improved staggered quarks

    Full text link
    We compute pseudoscalar meson masses and decay constants using staggered quarks on lattices with three flavors of sea quarks and lattice spacings 0.12\approx 0.12 fm and 0.09\approx 0.09 fm. We fit partially quenched results to ``staggered chiral perturbation theory'' formulae, thereby taking into account the effects of taste-symmetry violations. Chiral logarithms are observed. From the fits we calculate fπf_\pi and fKf_K, extract Gasser-Leutwyler parameters of the chiral Lagrangian, and (modulo rather large perturbative errors) find the light and strange quark masses.Comment: Lattice2003(spectrum); 3 pages, 1 eps figur

    Complete next-to-leading order calculation for pion production in nucleon-nucleon collisions at threshold

    Get PDF
    Based on a counting scheme that explicitly takes into account the large momentum sqrt(M m_pi) characteristic for pion production in nucleon-nucleon collisions we calculate all diagrams for the reaction NN --> NN pi at threshold up to next-to-leading order. At this order there are no free parameters and the size of the next-to-leading order contributions is in line with the expectation from power counting. The sum of loop corrections at that order vanishes for the process pp --> pp pi^0 at threshold. The total contribution at next-to-leading order from loop diagrams that include the delta degree of freedom vanishes at threshold in both reaction channels pp --> pp pi^0, pn pi^+.Comment: 9 pages, 4 figure

    Physical Results from Unphysical Simulations

    Full text link
    We calculate various properties of pseudoscalar mesons in partially quenched QCD using chiral perturbation theory through next-to-leading order. Our results can be used to extrapolate to QCD from partially quenched simulations, as long as the latter use three light dynamical quarks. In other words, one can use unphysical simulations to extract physical quantities - in this case the quark masses, meson decay constants, and the Gasser-Leutwyler parameters L_4-L_8. Our proposal for determining L_7 makes explicit use of an unphysical (yet measurable) effect of partially quenched theories, namely the double-pole that appears in certain two-point correlation functions. Most of our calculations are done for sea quarks having up to three different masses, except for our result for L_7, which is derived for degenerate sea quarks.Comment: 26 pages, 12 figures (discussion on discretization errors at end of sec. IV clarified; minor improvements in presentation; results unchanged

    Chiral Corrections to Lattice Calculations of Charge Radii

    Full text link
    Logarithmic divergences in pion and proton charge radii associated with chiral loops are investigated to assess systematic uncertainties in current lattice determinations of charge radii. The chiral corrections offer a possible solution to the long standing problem of why present lattice calculations yield proton and pion radii which are similar in size.Comment: PostScript file only. Ten pages. Figures included. U. of MD Preprint #92-19

    Is the up-quark massless?

    Get PDF
    We report on determinations of the low-energy constants alpha5 and alpha8 in the effective chiral Lagrangian at O(p^4), using lattice simulations with N_f=2 flavours of dynamical quarks. Precise knowledge of these constants is required to test the hypothesis whether or not the up-quark is massless. Our results are obtained by studying the quark mass dependence of suitably defined ratios of pseudoscalar meson masses and matrix elements. Although comparisons with an earlier study in the quenched approximation reveal small qualitative differences in the quark mass behaviour, numerical estimates for alpha5 and alpha8 show only a weak dependence on the number of dynamical quark flavours. Our results disfavour the possibility of a massless up-quark, provided that the quark mass dependence in the physical three-flavour case is not fundamentally different from the two-flavour case studied here.Comment: references added, typos correcte

    Partially quenched chiral perturbation theory without Φ0\Phi_0

    Get PDF
    This paper completes the argument that lattice simulations of partially quenched QCD can provide quantitative information about QCD itself, with the aid of partially quenched chiral perturbation theory. A barrier to doing this has been the inclusion of Φ0\Phi_0, the partially quenched generalization of the η\eta', in previous calculations in the partially quenched effective theory. This invalidates the low energy perturbative expansion, gives rise to many new unknown parameters, and makes it impossible to reliably calculate the relation between the partially quenched theory and low energy QCD. We show that it is straightforward and natural to formulate partially quenched chiral perturbation theory without Φ0\Phi_0, and that the resulting theory contains the effective theory for QCD without the η\eta'. We also show that previous results, obtained including Φ0\Phi_0, can be reinterpreted as applying to the theory without Φ0\Phi_0. We contrast the situation with that in the quenched effective theory, where we explain why it is necessary to include Φ0\Phi_0. We also compare the derivation of chiral perturbation theory in partially quenched QCD with the standard derivation in unquenched QCD. We find that the former cannot be justified as rigorously as the latter, because of the absence of a physical Hilbert space. Finally, we present an encouraging result: unphysical double poles in certain correlation functions in partially quenched chiral perturbation theory can be shown to be a property of the underlying theory, given only the symmetries and some plausible assumptions.Comment: 45 pages, no figure

    Chiral perturbation theory calculation for pn -> dpipi at threshold

    Get PDF
    We investigate the reaction pn -> dpipi in the framework of Chiral Perturbation Theory. For the first time a complete calculation of the leading order contributions is presented. We identify various diagrams that are of equal importance as compared to those recognized in earlier works. The diagrams at leading order behave as expected by the power counting. Also for the first time the nucleon-nucleon interaction in the initial, intermediate and final state is included consistently and found to be very important. This study provides a theoretical basis for a controlled evaluation of the non-resonant contributions in two-pion production reactions in nucleon-nucleon collisions.Comment: 24 pages, 3 figures, 3 table
    corecore