13 research outputs found

    The French National Registry of patients with Facioscapulohumeral muscular dystrophy

    No full text
    Abstract Background Facioscapulohumeral muscular dystrophy is a rare inherited neuromuscular disease with an estimated prevalence of 1/20,000 and France therefore harbors about 3000 FSHD patients. With research progress and the development of targeted therapies, patients’ identification through registries can facilitate and improve recruitment in clinical trials and studies. Results The French National Registry of FSHD patients was designed as a mixed model registry involving both patients and physicians, through self-report and clinical evaluation questionnaires respectively, to collect molecular and clinical data. Because of the limited number of patients, data quality is a major goal of the registry and various automatic data control features have been implemented in the bioinformatics system. In parallel, data are manually validated by molecular and clinical curators. Since its creation in 2013, data from 638 FSHD patients have been collected, representing about 21% of the French FSHD population. The mixed model strategy allowed to collect 59.1% of data from both patients and clinicians; 26 and 14.9% from respectively patients and clinicians only. With the identification of the FSHD1 and FSHD2 forms, specific questionnaires have been designed. Though FSHD2 patients are progressively included, FSHD1 patients still account for the majority (94.9%). The registry is compatible with the FAIR principles as data are Findable, Accessible and Interoperable. We thus used molecular standards and standardized clinical terms used by the FILNEMUS French network of reference centers for the diagnosis and follow-up of patients suffering from a rare neuromuscular disease. The implemented clinical terms mostly map to dictionaries and terminology systems such as SNOMED-CT (75% of terms), CTV3 (61.7%) and NCIt (53.3%). Because of the sensitive nature of data, they are not directly reusable and can only be accessed as aggregated data after evaluation and approval by the registry oversight committee. Conclusions The French National Registry of FSHD patients belongs to a national effort to develop databases, which should now interact with other initiatives to build a European and/or an international FSHD virtual registry for the benefits of patients. It is accessible at www.fshd.fr and various useful information, links, and documents, including a video, are available for patients and professionals

    Facioscapulohumeral dystrophy weakened sarcomeric contractility is mimicked in induced pluripotent stem cells‐derived innervated muscle fibres

    No full text
    International audienceBackground: Facioscapulohumeral dystrophy (FSHD) is a late-onset autosomal dominant form of muscular dystrophy involving specific groups of muscles with variable weakness that precedes inflammatory response, fat infiltration, and muscle atrophy. As there is currently no cure for this disease, understanding and modelling the typical muscle weakness in FSHD remains a major milestone towards deciphering the disease pathogenesis as it will pave the way to therapeutic strategies aimed at correcting the functional muscular defect in patients.Methods: To gain further insights into the specificity of the muscle alteration in this disease, we derived induced pluripotent stem cells from patients affected with Types 1 and 2 FSHD but also from patients affected with Bosma arhinia and microphthalmia. We differentiated these cells into contractile innervated muscle fibres and analysed their transcriptome by RNA Seq in comparison with cells derived from healthy donors. To uncover biological pathways altered in the disease, we applied MOGAMUN, a multi-objective genetic algorithm that integrates multiplex complex networks of biological interactions (protein-protein interactions, co-expression, and biological pathways) and RNA Seq expression data to identify active modules.Results: We identified 132 differentially expressed genes that are specific to FSHD cells (false discovery rate < 0.05). In FSHD, the vast majority of active modules retrieved with MOGAMUN converges towards a decreased expression of genes encoding proteins involved in sarcomere organization (P value 2.63e-12 ), actin cytoskeleton (P value 9.4e-5 ), myofibril (P value 2.19e-12 ), actin-myosin sliding, and calcium handling (with P values ranging from 7.9e-35 to 7.9e-21 ). Combined with in vivo validations and functional investigations, our data emphasize a reduction in fibre contraction (P value < 0.0001) indicating that the muscle weakness that is typical of FSHD clinical spectrum might be associated with dysfunction of calcium release (P value < 0.0001), actin-myosin interactions, motor activity, mechano-transduction, and dysfunctional sarcomere contractility.Conclusions: Identification of biomarkers of FSHD muscle remain critical for understanding the process leading to the pathology but also for the definition of readouts to be used for drug design, outcome measures, and monitoring of therapies. The different pathways identified through a system biology approach have been largely overlooked in the disease. Overall, our work opens new perspectives in the definition of biomarkers able to define the muscle alteration but also in the development of novel strategies to improve muscle function as it provides functional parameters for active molecule screening

    Nociceptive sensory neurons promote CD8 T cell responses to HSV-1 infection

    Get PDF
    International audienceAbstract Host protection against cutaneous herpes simplex virus 1 (HSV-1) infection relies on the induction of a robust adaptive immune response. Here, we show that Nav 1.8 + sensory neurons, which are involved in pain perception, control the magnitude of CD8 T cell priming and expansion in HSV-1-infected mice. The ablation of Nav 1.8 -expressing sensory neurons is associated with extensive skin lesions characterized by enhanced inflammatory cytokine and chemokine production. Mechanistically, Nav 1.8 + sensory neurons are required for the downregulation of neutrophil infiltration in the skin after viral clearance to limit the severity of tissue damage and restore skin homeostasis, as well as for eliciting robust CD8 T cell priming in skin-draining lymph nodes by controlling dendritic cell responses. Collectively, our data reveal an important role for the sensory nervous system in regulating both innate and adaptive immune responses to viral infection, thereby opening up possibilities for new therapeutic strategies

    Loss of ZMPSTE24 (FACE-1) causes autosomal recessive restrictive dermopathy and accumulation of Lamin A precursors

    No full text
    Restrictive dermopathy (RD) is characterized by intrauterine growth retardation, tight and rigid skin with prominent superficial vessels, bone mineralization defects, dysplastic clavicles, arthrogryposis and early neonatal death. In two patients affected with RD, we recently reported two different heterozygous splicing mutations in the LMNA gene, leading to the production and accumulation of truncated Prelamin A. In other patients, a single nucleotide insertion was identified in ZMPSTE24. This variation is located in a homopolymeric repeat of thymines and introduces a premature termination codon. ZMPSTE24 encodes an endoprotease essential for the post-translational cleavage of the Lamin A precursor and the production of mature Lamin A. However, the autosomal recessive inheritance of RD suggested that a further molecular defect was present either in the second ZMPSTE24 allele or in another gene involved in Lamin A processing. Here, we report new findings in RD linked to ZMPSTE24 mutations. Ten RD patients were analyzed including seven from a previous series and three novel patients. All were found to be either homozygous or compound heterozygous for ZMPSTE24 mutations. We report three novel 'null' mutations as well as the recurrent thymine insertion. In all cases, we find a complete absence of both ZMPSTE24 and mature Lamin A associated with Prelamin A accumulation. Thus, RD is either a primary or a secondary laminopathy, caused by dominant de novo LMNA mutations or, more frequently, recessive null ZMPSTE24 mutations, most of which lie in a mutation hotspot within exon 9. The accumulation of truncated or normal length Prelamin A is, therefore, a shared pathophysiological feature in recessive and dominant RD. These findings have an important impact on our knowledge of the pathophysiology in Progeria and related disorders and will help direct the development of therapeutic approache
    corecore