605 research outputs found

    Implications of the DAMA/NaI and CDMS experiments for mirror matter-type dark matter

    Full text link
    We re-analyse the implications of the DAMA/NaI experiment for mirror matter-type dark matter, taking into account information from the energy dependence of the DAMA annual modulation signal. This is combined with the null results from the CDMS experiment, leading to fairly well defined allowed regions of parameter space. The allowed regions of parameter space will be probed in the near future by the DAMA/LIBRA, CDMS, and other experiments, which should either exclude or confirm this explanation of the DAMA/NaI annual modulation signal. In particular, we predict that the CDMS experiments should find a positive signal around the threshold recoil energy region, E_R < 15 keV in the near future.Comment: about 15 pages, Some changes to the tex

    Technical aspects in dark matter investigations

    Full text link
    Some theoretical and experimental aspects regarding the direct dark matter field are mentioned. In particular some arguments, which play a relevant role in the evaluation of model dependent interpretations of experimental results and in comparisons, are shortly addressed.Comment: Proceedings of TAUP 2011 Conferenc

    A comprehensive analysis of the dark matter direct detection experiments in the mirror dark matter framework

    Full text link
    Mirror dark matter offers a framework to explain the existing dark matter direct detection experiments. Here we confront this theory with the most recent experimental data, paying attention to the various known systematic uncertainties, in quenching factor, detector resolution, galactic rotational velocity and velocity dispersion. We perform a detailed analysis of the DAMA and CoGeNT experiments assuming a negligible channeling fraction and find that the data can be fully explained within the mirror dark matter framework. We also show that the mirror dark matter candidate can explain recent data from the CDMS/Ge, EdelweissII and CRESSTII experiments and we point out ways in which the theory can be further tested in the near future.Comment: about 30 page

    GENIUS-TF: a test facility for the GENIUS project

    Get PDF
    GENIUS is a proposal for a large scale detector of rare events. As a first step of the experiment, a small test version, the GENIUS test facility, will be build up at the Laboratorio Nazionale del Gran Sasso (LNGS). With about 40 kg of natural Ge detectors operated in liquid nitrogen, GENIUS-TF could exclude (or directly confirm) the DAMA annual modulation signature within about two years of measurement.Comment: 14 pages, latex, 5 figures, 3 tables; submitted to Astroparticle Physic

    Searching for the Annual Modulation of Dark Matter signal with the GENIUS-TF experiment

    Full text link
    The annual modulation of the recoil spectrum observed in an underground detector is well known as the main signature of a possible WIMP signal. The GENIUS-TF experiment, under construction in the Gran Sasso National Laboratory, can search for the annual modulation of the Dark Matter signal using 40 kg of naked-Ge detectors in liquid nitrogen. Starting from a set of data simulated under the hypothesis of modulation and using different methods, we show the potential of GENIUS-TF for extracting the modulated signal and the expected WIMP mass and WIMP cross section.Comment: In press, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (2003) and in Proc. of IDM2002, York Minster, England, 2-6 September, 2002, World Scientific 200

    Mirror dark matter interpretations of the DAMA, CoGeNT and CRESST-II data

    Full text link
    The CRESST-II collaboration have announced evidence for the direct detection of dark matter in 730 kg-days exposure of a CaWO4_4 target. We examine these new results, along with DAMA and CoGeNT data, in the context of the mirror dark matter framework. We show that all three experiments can be simultaneously explained via kinetic mixing induced elastic scattering of a mirror metal component off target nuclei. This metal component can be as heavy as Fe' if the galactic rotational velocity is relatively low: vrot<220v_{rot} \stackrel{<}{\sim} 220 km/s. This explanation is consistent with the constraints from the other experiments, such as CDMS/Ge, CDMS/Si and XENON100 when modest 2030\sim 20-30% uncertainties in energy scale are considered.Comment: 20 pages, minor changes, a minor mistake fixe

    Long-Range Forces in Direct Dark Matter Searches

    Get PDF
    We discuss the positive indications of a possible dark matter signal in direct detection experiments in terms of a mechanism of interaction between the dark matter particle and the nuclei occurring via the exchange of a light mediator, resulting in a long-range interaction. We analyze the annual modulation results observed by the DAMA and CoGeNT experiments and the observed excess of events of CRESST. In our analysis, we discuss the relevance of uncertainties related to the velocity distribution of galactic dark matter and to the channeling effect in NaI. We find that a long-range force is a viable mechanism, which can provide full agreement between the reconstructed dark matter properties from the various experimental data sets, especially for masses of the light mediator in the 10-30 MeV range and a light dark matter with a mass around 10 GeV. The relevant bounds on the light mediator mass and scattering cross section are then derived, should the annual modulation effects be due to this class of long-range forces.Comment: 22 pages, 14 figures. v2: Matches version published on Phys.Rev.D; analysis of CRESST to match the recent release of the new data updated, discussion on astrophysical constraints on self-interacting dark matter added, some typos corrected and some references added, conclusions unchanged. v3: Few typos correcte

    Simulation of the Directional Dark Matter Detector (D3) and Directional Neutron Observer (DiNO)

    Full text link
    Preliminary simulation and optimization studies of the Directional Dark Matter Detector and the Directional Neutron Observer are presented. These studies show that the neutron interaction with the gas-target in these detectors is treated correctly by GEANT4 and that by lowering the pressure, the sensitivity to low-mass WIMP candidates is increased. The use of negative ion drift might allow us to search the WIMP mass region suggested by the results of the non-directional experiments DAMA/LIBRA, CoGeNT and CRESST-II.Comment: Proceedings of the 3rd International conference on Directional Detection of Dark Matter (CYGNUS 2011), Aussois, France, 8-10 June 201

    Testing for new physics with low-energy anti-neutrino sources: LAMA as a case study

    Get PDF
    Some electroweak models with extended neutral currents, such as those based on the E6 group, lead to an increase of the ν¯−e scattering cross section at energies below 100 keV. We propose to search for the heavy Z' boson contribution in an experiment with a high-activity artificial neutrino source and with a large-mass detector. We present the case for the LAMA experiment with a large NaI(Tl) detector located at the Gran Sasso underground laboratory. The neutrino flux is known to within a one percent accuracy, in contrast to the reactor case and one can reach lower neutrino energies. Both features make our proposed experiment more sensitive to extended gauge models, such as the χ model. For a low enough background the sensitivity to the Zχ boson mass would reach 600 GeV for one year running of the experiment

    A Consistent Dark Matter Interpretation For CoGeNT and DAMA/LIBRA

    Full text link
    In this paper, we study the recent excess of low energy events observed by the CoGeNT collaboration and the annual modulation reported by the DAMA/LIBRA collaboration, and discuss whether these signals could both be the result of the same elastically scattering dark matter particle. We find that, without channeling but when taking into account uncertainties in the relevant quenching factors, a dark matter candidate with a mass of approximately ~7.0 GeV and a cross section with nucleons of sigma_{DM-N} ~2x10^-4 pb (2x10^-40 cm^2) could account for both of these observations. We also comment on the events recently observed in the oxygen band of the CRESST experiment and point out that these could potentially be explained by such a particle. Lastly, we compare the region of parameter space favored by DAMA/LIBRA and CoGeNT to the constraints from XENON 10, XENON 100, and CDMS (Si) and find that these experiments cannot at this time rule out a dark matter interpretation of these signals.Comment: 8 pages, 6 figure
    corecore