63 research outputs found

    Medial Prefrontal Cortical Thinning Mediates Shifts in Other-Regarding Preferences during Adolescence

    Get PDF
    Adolescence is a time of significant cortical changes in the ‘social brain’, a set of brain regions involved in sophisticated social inference. However, there is limited evidence linking the structural changes in social brain to development of social behavior. The present study investigated how cortical development of the social brain relates to other-regarding behavior, in the context of fairness concerns. Participants aged between 9 to 23 years old responded to multiple rounds of ultimatum game proposals. The degree to which each participant considers fairness of intention (i.e., intention-based reciprocity) vs. outcome (i.e., egalitarianism) was quantified using economic utility models. We observed a gradual shift in other-regarding preferences from simple rule-based egalitarianism to complex intention-based reciprocity from early childhood to young adulthood. The preference shift was associated with cortical thinning of the dorsomedial prefrontal cortex and posterior temporal cortex. Meta-analytic reverse-inference analysis showed that these regions were involved in social inference. Importantly, the other-regarding preference shift was statistically mediated by cortical thinning in the dorsomedial prefrontal cortex. Together these findings suggest that development of the ability to perform sophisticated other-regarding social inference is associated with the structural changes of specific social brain regions in late adolescence

    Assessing Empathy across Childhood and Adolescence: Validation of the Empathy Questionnaire for Children and Adolescents (EmQue-CA)

    Get PDF
    Empathy plays a crucial role in healthy social functioning and in maintaining positive social relationships. In this study, 1250 children and adolescents (10–15 year olds) completed the newly developed Empathy Questionnaire for Children and Adolescents (EmQue-CA) that was tested on reliability, construct validity, convergent validity, and concurrent validity. The EmQue-CA aims to assess empathy using the following scales: affective empathy, cognitive empathy, and intention to comfort. A Principal Components Analysis, which was directly tested with a Confirmatory Factor Analysis, confirmed the proposed three-factor model resulting in 14 final items. Reliability analyses demonstrated high internal consistency of the scales. Furthermore, the scales showed high convergent validity, as they were positively correlated with related scales of the Interpersonal Reactivity Index (Davis, 1983). With regard to concurrent validity, higher empathy was related to more attention to others’ emotions, higher friendship quality, less focus on own affective state, and lower levels of bullying behavior. Taken together, we show that the EmQue-CA is a reliable and valid instrument to measure empathy in typically developing children and adolescents aged 10 and older

    Chronic Childhood Peer Rejection is Associated with Heightened Neural Responses to Social Exclusion During Adolescence

    Get PDF
    This functional Magnetic Resonance Imaging (fMRI) study examined subjective and neural responses to social exclusion in adolescents (age 12-15) who either had a stable accepted (n = 27; 14 males) or a chronic rejected (n = 19; 12 males) status among peers from age 6 to 12. Both groups of adolescents reported similar increases in distress after being excluded in a virtual ball-tossing game (Cyberball), but adolescents with a history of chronic peer rejection showed higher activity in brain regions previously linked to the detection of, and the distress caused by, social exclusion. Specifically, compared with stably accepted adolescents, chronically rejected adolescents displayed: 1) higher activity in the dorsal anterior cingulate cortex (dACC) during social exclusion and 2) higher activity in the dACC and anterior prefrontal cortex when they were incidentally excluded in a social interaction in which they were overall included. These findings demonstrate that chronic childhood peer rejection is associated with heightened neural responses to social exclusion during adolescence, which has implications for understanding the processes through which peer rejection may lead to adverse effects on mental health over time.Pathways through Adolescenc

    Better than Expected or as Bad as You Thought? The Neurocognitive Development of Probabilistic Feedback Processing

    Get PDF
    Learning from feedback lies at the foundation of adaptive behavior. Two prior neuroimaging studies have suggested that there are qualitative differences in how children and adults use feedback by demonstrating that dorsolateral prefrontal cortex (DLPFC) and parietal cortex were more active after negative feedback for adults, but after positive feedback for children. In the current study we used functional magnetic resonance imaging (fMRI) to test whether this difference is related to valence or informative value of the feedback by examining neural responses to negative and positive feedback while applying probabilistic rules. In total, 67 healthy volunteers between ages 8 and 22 participated in the study (8–11 years, n = 18; 13–16 years, n = 27; 18–22 years, n = 22). Behavioral comparisons showed that all participants were able to learn probabilistic rules equally well. DLPFC and dorsal anterior cingulate cortex were more active in younger children following positive feedback and in adults following negative feedback, but only when exploring alternative rules, not when applying the most advantageous rules. These findings suggest that developmental differences in neural responses to feedback are not related to valence per se, but that there is an age-related change in processing learning signals with different informative value

    Longitudinal links between childhood peer acceptance and the neural correlates of sharing

    Get PDF
    Childhood peer acceptance is associated with high levels of prosocial behavior and advanced perspective taking skills. Yet, the neurobiological mechanisms underlying these associations have not been studied. This functional magnetic resonance imaging study examined the neural correlates of sharing decisions in a group of adolescents who had a stable accepted status (n = 27) and a group who had a chronic rejected status (n = 19) across six elementary school grades. Both groups of adolescents played three allocation games in which they could share money with strangers with varying costs and profits to them and the other person. Stably accepted adolescents were more likely to share their money with unknown others than chronically rejected adolescents when sharing was not costly. Neuroimaging analyses showed that stably accepted adolescents, compared to chronically rejected adolescents, exhibited higher levels of activation in the temporo-parietal junction, posterior superior temporal sulcus, temporal pole, pre-supplementary motor area, and anterior insula during costly sharing decisions. These findings demonstrate that stable peer acceptance across childhood is associated with heightened activity in brain regions previously linked to perspective taking and the detection of social norm violations during adolescence, and thereby provide insight into processes underlying the widely established links between peer acceptance and prosocial behavior

    Brain Responses to Peer Feedback in Social Media Are Modulated by Valence in Late Adolescence

    Get PDF
    Previous studies have examined the neural correlates of receiving negative feedback from peers during virtual social interaction in young people. However, there is a lack of studies applying platforms adolescents use in daily life. In the present study, 92 late-adolescent participants performed a task that involved receiving positive and negative feedback to their opinions from peers in a Facebook-like platform, while brain activity was measured using functional magnetic resonance imaging (fMRI). Peer feedback was shown to activate clusters in the ventrolateral prefrontal cortex (VLPFC), medial prefrontal cortex (MPFC), superior temporal gyrus and sulcus (STG/STS), and occipital cortex (OC). Negative feedback was related to greater activity in the VLPFC, MPFC, and anterior insula than positive feedback, replicating previous findings on peer feedback and social rejection. Real-life habits of social media use did not correlate with brain responses to negative feedback.Peer reviewe

    Friendship stability in adolescence is associated with ventral striatum responses to vicarious rewards

    Get PDF
    An important task for adolescents is to form and maintain friendships. In this three-wave biannual study, we used a longitudinal neuroscience perspective to examine the dynamics of friendship stability. Relative to childhood and adulthood, adolescence is marked by elevated ventral striatum activity when gaining self-serving rewards. Using a sample of participants between the ages of eight and twenty-eight, we tested age-related changes in ventral striatum response to gaining for stable (n = 48) versus unstable best friends (n = 75) (and self). In participants with stable friendships, we observed a quadratic developmental trajectory of ventral striatum responses to winning versus losing rewards for friends, whereas participants with unstable best friends showed no age-related changes. Ventral striatum activity in response to winning versus losing for friends further varied with friendship closeness for participants with unstable friendships. We suggest that these findings may reflect changing social motivati

    Developmental Changes in Dynamic Functional Connectivity From Childhood Into Adolescence

    Get PDF
    The longitudinal study of typical neurodevelopment is key for understanding deviations due to specific factors, such as psychopathology. However, research utilizing repeated measurements remains scarce. Resting-state functional magnetic resonance imaging (MRI) studies have traditionally examined connectivity as ‘static’ during the measurement period. In contrast, dynamic approaches offer a more comprehensive representation of functional connectivity by allowing for different connectivity configurations (time varying connectivity) throughout the scanning session. Our objective was to characterize the longitudinal developmental changes in dynamic functional connectivity in a population-based pediatric sample. Resting-state MRI data were acquired at the ages of 10 (range 8-to-12, n = 3,327) and 14 (range 13-to-15, n = 2,404) years old using a single, study-dedicated 3 Tesla scanner. A fully-automated spatially constrained group-independent component analysis (ICA) was applied to decompose multi-subject resting-state data into functionally homogeneous regions. Dynamic functional network connectivity (FNC) between all ICA time courses were computed using a tapered sliding window approach. We used a k-means algorithm to cluster the resulting dynamic FNC windows from each scan session into five dynamic states. We examined age and sex associations using linear mixed-effects models. First, independent from the dynamic states, we found a general increase in the temporal variability of the connections between intrinsic connectivity networks with increasing age. Second, when examining the clusters of dynamic FNC windows, we observed that the time spent in less modularized states, with low intra- and inter-network connectivity, decreased with age. Third, the number of transitions between states also decreased with age. Finally, compared to boys, girls showed a more mature pattern of dynamic brain connectivity, indicated by more time spent in a highly modularized state, less time spent in specific states that are frequently observed at a younger age, and a lower number of transitions between states. This longitudinal population-based study demonstrates age-related maturation in dynamic intrinsic neural activity from childhood into adolescence and offers a meaningful baseline for comparison with deviations from typical development. Given that several behavioral and cognitive processes also show marked changes through childhood and adolescence, dynamic functional connectivity should also be explored as a potential neurobiological determinant of such changes

    Beyond the Average Brain: Individual Differences in Social Brain Development are Associated with Friendship Quality

    Get PDF
    We tested whether adolescents differ from each other in the structural development of the social brain, and whether individual differences in social brain development predicted variability in friendship quality development. Adolescents (N = 299, Mage T1 = 13.98 years) were followed across three bi-annual waves. We analysed self-reported friendship quality with the best friend at T1 and T3, and bilateral measures of surface area and cortical thickness of the medial prefrontal cortex (mPFC), posterior superior temporal sulcus (pSTS), temporo-parietal junction (TPJ), and precuneus across all waves. At the group level, growth curve models confirmed non-linear decreases of surface area and cortical thickness in social brain regions. We identified substantial individual differences in levels and change rates of social brain regions, especially for surface area of the mPFC, pSTS, and TPJ. Change rates of cortical thickness varied less between persons. Higher levels of mPFC surface area and cortical thickness predicted stronger increases in friendship quality over time. Moreover, faster cortical thinning of mPFC surface area predicted a stronger increase in friendship quality. Higher levels of TPJ cortical thickness predicted lower friendship quality. Together, our results indicate heterogeneity in social brain development and how this variability uniquely predicts friendship quality development

    Friend versus foe: Neural correlates of prosocial decisions for liked and disliked peers

    Get PDF
    Although the majority of our social interactions are with people we know, few studies have investigated the neural correlates of sharing valuable resources with familiar others. Using an ecologically valid research paradigm, this functional magnetic resonance imaging study examined the neural correlates of prosocial and selfish behavior in interactions with real-life friends and disliked peers in young adults. Participants (N = 27) distributed coins between themselves and another person, where they could make selfish choices that maximized their own gains or prosocial choices that maximized outcomes of the other. Participants were more prosocial toward friends and more selfish toward disliked peers. Individual prosociality levels toward friends were associated negatively with supplementary motor area and anterior insula activity. Further preliminary analyses showed that prosocial decisions involving friends were associated with heightened activity in the bilateral posterior temporoparietal junction, and selfish decisions involving disliked peers were associated with heightened superior temporal sulcus activity, which are brain regions consistently shown to be involved in mentalizing and perspective taking in prior studies. Further, activation of the putamen was observed during prosocial choices involving friends and selfish choices involving disliked peers. These findings provide insights into the modulation of neural processes that underlie prosocial behavior as a function of a positive or negative relationship with the interaction partner
    corecore