12 research outputs found

    Temperature insensitive waveguide interferometer based on subwavelength gratings

    Get PDF
    We present a design for a temperature insensitive Mach-Zehnder interferometer in which temperature compensating segment is achieved through tailored subwavelength gratings. By engineering the thermal response and the relative length of this segment, an overall temperature insensitivity below ±4pm/ºK is predicted for 100nm bandwidth around 1550nm

    Designing polarization management devices by tilting subwavelength grating structures

    Get PDF
    Subwavelength gratings (SWG) are periodic structures which behave as controllable homogeneous metamaterials. SWGs are extremely interesting when they are used in platforms with a limited choice of material refractive indices, enabling the design of a myriad of high-performance devices. Here we present a novel technique to gain control over the intrinsic anisotropy of the synthesized metamaterial. We show that tilting the silicon segments in a SWG structure mainly affects the in-plane (TE) modes, with little impact on the out-of-plane (TM) modes. Moreover, we present a methodology to quickly but accurately calculate the modes of a tilted periodic structure modeling the structure as a rotated uniaxial crystal which can be solved with an anisotropic mode solver. Measurements on a set of fabricated tilted SWG waveguides validate our simulation results. By using the presented technique, we design a polarization beam splitter based on a 2x2 multimode interferometer. The design is based on the optimization of the tilting angle to tone the beat length of the TE modes to be a half of the beat length of the TM modes.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech; Ministerio de Economía y Competitividad (MINECO) (IJCI-2016-30484, TEC2015-71127-C2-R, TEC2016-80718-R); Ministerio de Educación, Cultura y Deporte (MECD) (FPU16/06762); European Regional Development Fund (ERDF); Comunidad de Madrid (SINFOTON-CM S2013/MIT-2790); European Association of National Metrology Institutes (EURAMET) (H2020-MSCA-RISE-2015:SENSIBLE, JRP-i22 14IND13 Photind)

    Tilted subwavelength gratings: controlling anisotropy in metamaterial nanophotonic waveguides

    Get PDF
    Subwavelength grating (SWG) structures are an essential tool in silicon photonics, enabling the synthesis of metamaterials with a controllable refractive index. Here we propose, for the first time to the best of our knowledge, tilting the grating elements to gain control over the anisotropy of the metamaterial. Rigorous finite difference time domain simulations demonstrate that a 45° tilt results in an effective index variation on the fundamental TE mode of 0.23 refractive index units, whereas the change in the TM mode is 20 times smaller. Our simulation predictions are corroborated by experimental results. We furthermore propose an accurate theoretical model for designing tilted SWG structures based on rotated uniaxial crystals that is functional over a wide wavelength range and for both the fundamental and higher order modes. The proposed control over anisotropy opens promising venues in polarization management devices and transformation optics in silicon photonics.Universidad de Málaga (UMA); Ministerio de Economía y Competitividad (MINECO) (IJCI-2016-30484, TEC2015-71127-C2-R, TEC2016-80718-R); Ministerio de Educación, Cultura y Deporte (MECD) (FPU16/06762); European Regional Development Fund (ERDF); Comunidad de Madrid (SINFOTON-CM S2013/MIT-2790); European Association of National Metrology Institutes (EURAMET) (H2020-MSCA-RISE-2015:SENSIBLE, JRP-i22 14IND13 Photind)

    Design of an athermal interferometer based on tailored subwavelength metamaterials for on-chip microspectrometry

    Get PDF
    Temperature dependence is one of the main challenges of the silicon-on-insulator platform due to the large thermo-optic coefficient of its core material. In this work, to the best of our knowledge, we propose a design of an all-passive athermal silicon-on-insulator Mach-Zehnder interferometer (MZI) with the minimal temperature sensitivity reported to date. The MZI’s temperature compensation was achieved by optimizing the relative length of its wire and subwavelength arms and by tailoring the thermal response of the subwavelength structure. Simulations of the device performance showed that the overall temperature sensitivity of 7.5 pm/K could be achieved over a 100 nm spectral range near the 1550 nm region

    A broadband polarization splitter directional coupler based on tilted subwavelengh grating metamaterials

    Get PDF
    Tilted subwavelength gratings (SWG) allows anisotropy tailorable metamaterials with applications in polarization management. Based on this concept, here we experimentally demonstrate a broadband directional-couplerbased polarization beam splitter with sub-decibel insertion loss in a 100 nm bandwidth.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Smart on-chip Fourier-transform spectrometers harnessing machine learning algorithms

    Get PDF
    Miniaturized silicon photonics spectrometers have great potential for mass market applications like medicine and hazard detection. However, the performance of state-of-the-art silicon spectrometers is limited by fabrication imperfections and temperature variations. In this work, we present a fundamentally new strategy that combines machine learning algorithms and on-chip spatial heterodyne Fourier-transform spectroscopy to identify specific absorption features operated under a wide range of temperatures in the presence of fabrication imperfections. We experimentally show differentiation of four different input spectra with unknown temperature variations as large as 10 °C. This is about 100x increase in operational range, compared to state-of-the-art retrieval techniques

    Separador de polarización integrado de altas prestaciones basado en estructuras sub-longitud de onda

    Get PDF
    Polarization management is a key factor in photonics integration platforms with high birefringence such as Silicon-On- Insulator. Here we design a directional coupler polarization beam splitter composed of two subwavelength waveguides, which only differ in the tilt angle of the silicon segments. Our simulations predict an extinction ratio higher than 20 dB over an 86 nm bandwidth with negligible losses. The fabricated device is only 14 μm long, covers a 72 nm bandwidth with sub-decibel insertion losses and exhibits an extinction ratio in excess of 15 dB.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Spectral retrieval techniques for high-resolution Fourier-transform micro-spectrometers

    Get PDF
    Spatial heterodyne Fourier transform (SHFT) spectroscopy is based on simultaneous interferometric measurements implementing linearly increasing optical path differences, hence circumventing the need for mechanical components of traditional Fourier transform spectroscopy schemes. By taking advantage of the high mode confinement of the Silicon-on-Insulator (SOI). platform, great interferometric lengths can be implemented in a reduced footprint, hence increasing the resolution of the device. However, as resolution increases, spectrometers become progressively more sensitive to environmental conditions, and new spectral retrieval techniques are required. In this work, we present several software techniques that enhance the operation of high-resolution SHFT micro-spectrometers. Firstly, we present two techniques for mitigating and correcting the effects of temperature drifts, based on a temperature-sensitive calibration and phase errors correction. Both techniques are demonstrated experimentally on a 32 Mach-Zehnder interferometers array fabricated in a Silicon-on-insulator chip with microphotonic spirals of linearly increasing length up to 3.779 cm. This configuration provides a resolution of 17 pm in a compact device footprint of 12 mm(2). Secondly, we propose the application of compressive-sensing (CS) techniques to SHFT micro-spectrometers. By assuming spectrum sparsity, an undersampled discrete Fourier interferogram is inverted using l1-norm minimization to retrieve the input spectrum. We demonstrate this principle on a subwavelength-engineered SHFT with 32 MZIs and a 50 pm resolution. Correct retrieval of three sparse input signals was experimentally demonstrated using data from 14 or fewer MZIs and applying common CS reconstruction techniques to this data

    Silicon high performance devices using subwavelength structures

    Get PDF
    Ministerio de Economía y Competitividad, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad (cofinanciado FEDER), Proyecto TEC2016-80718-R Universidad de MälagaSilicon photonics is poised to solve challenges in areas such as datacom, environmental monitoring and diagnostics, by leveraging the economies of scale afforded by CMOS manufacturing. This requires a wide variety of integrated silicon devices, including fiber-to-chip couplers, polarization splitters and waveguide couplers, operating both in the near-infrared and the mid-infrared wavelength range. However, the reduced set of materials available in this platform can often limit the performance of these devices. Subwavelength structures enable the synthesis of optical metamaterials, with properties than can be tuned to enhance device performance, by using fully etched silicon structures with a periodicity smaller than the wavelength of light. Here we review the basic operating principles of these structures, discuss how to efficiently model them, and report on the latest advances in this rapidly growing field.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    On-chip Fourier-transform spectrometers and machine learning : a new route to smart photonic sensors

    Get PDF
    Miniaturized silicon photonics spectrometers capable of detecting specific absorption features have great potential for mass market applications in medicine, environmental monitoring, and hazard detection. However, state-of-the-art silicon spectrometers are limited by fabrication imperfections and environmental conditions, especially temperature variations, since uncontrolled temperature drifts of only 0.1 °C distort the retrieved spectrum precluding the detection and classification of the absorption features. Here, we present a new strategy that exploits the robustness of machine learning algorithms to signal imperfections, enabling recognition of specific absorption features in a wide range of environmental conditions. We combine on-chip spatial heterodyne Fourier-transform spectrometers and supervised learning to classify different input spectra in the presence of fabrication errors, without temperature stabilization or monitoring. We experimentally show differentiation of four different input spectra under an uncontrolled 10 °C range of temperatures, about 100x increase in operational range, with a success rate up to 82.5% using state-of-the-art support vector machines and artificial neural networks
    corecore