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Miniaturized silicon photonics spectrometers capable of 
detecting specific absorption features have great 
potential for mass market applications in medicine, 
environmental monitoring, and hazard detection. 
However, state-of-the-art silicon spectrometers are 
limited by fabrication imperfections and environmental 
conditions, especially temperature variations, since 
uncontrolled temperature drifts of only 0.1 °C distort the 
retrieved spectrum precluding the detection and 
classification of the absorption features. Here, we 
present a new strategy that exploits the robustness of 
machine learning algorithms to signal imperfections, 
enabling recognition of specific absorption features in a 
wide range of environmental conditions. We combine on-
chip spatial heterodyne Fourier-transform 
spectrometers and supervised learning to classify 
different input spectra in the presence of fabrication 
errors, without temperature stabilization or monitoring. 
We experimentally show differentiation of four different 
input spectra under an uncontrolled 10 °C range of 
temperatures, about 100x increase in operational range, 
with a success rate up to 82.5% using state-of-the-art 
support vector machines and artificial neural networks. 
© 2019 Optical Society of America 
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Miniaturized silicon photonics spectrometers have a great 
potential for mass market applications, ranging from medicine, 
biological and environmental sciences to astrophysics and 

telecommunication [1]. Most common approaches, based on 
dispersive devices such as arrayed waveguide gratings (AWG) [2], 
waveguide echelle gratings [3] or cascaded micro-ring resonators 
[4], present some important disadvantages that limit their 
performance in terms of sensitivity to fabrication imperfections 
and environmental conditions, signal-to-noise ratio (SNR) and 
optical throughput. Most of these limitations are overcome with 
spatial heterodyne Fourier-transform (SHFT) spectrometers [5-
11], which provide the high SNR and optical throughput of 
conventional Fourier-transform (FT) spectrometers [12], while 
obviating the need of moving elements or heaters [13]. SHFT 
spectrometers rely on an array of Mach-Zehnder interferometers 
(MZI), each of them with a different optical path difference (OPD) 
to create a spatial interferogram from which the input spectrum is 
retrieved [5].  

This approach enables passive calibration techniques that 
correct the effects of fabrication imperfections [5,14]. However, 
even if fabrication errors are corrected, additional thermally-
induced phase errors can arise due to the high thermal 
dependence of the Si waveguides,  (which is equal to 

 and , for TE and TM polarization, 
respectively, at a wavelength of 1.55 µm) [15]. This thermal 
dependence imposes a rigorous temperature control. For a 42 pm 
resolution spectrometer [5], as the one presented in Fig. 1, 
temperature variations as small as 0.1 °C produce alterations in the 
OPD of each interferometer that result in significant degradation of 
the retrieved input spectrum, including central wavelength shifts, 
sidelobe level increments and presence of artifacts (see Fig. 1 (c)). 
A resolution of 42 pm (0.16 cm-1) approaches the requirements for 
gas-phase detection [16]. However, the strong temperature 
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dependence limits the applicability of conventional on-chip SHFT 
spectrometers outside of the lab. In [15], spectral retrieval 
methods based on a temperature-sensitive calibration are 
presented to mitigate this problem. However, these methods rely 
on extensive and accurate calibration and auxiliary temperature 
measurements in order to accurately retrieve the complete 
spectrum, which can be burdensome in applications such as gas 
identification, which only require robust classification among a 
fixed set of inputs in a wide range of operation conditions. 
Concurrently, machine learning (ML) has already been 
successfully applied to analyze complex data creating predictive 
models for pattern classification in a plethora of applications, 
including facial expression recognition [17], genetic and genomic 
analysis [18] or automated traffic classification [19]. All these 
applications benefit from the unique capability of ML algorithms to 
detect and classify specific patterns, even under changing or 
unknown environmental conditions or noise.  

In this work, we present a new spectral recognition approach 
that leverages ML for SHFT spectrometers to recognize specific 
absorption features in the presence of fabrication imperfections, 
regardless of temperature. We train our algorithm to recognize the 
signature of specific absorption patterns directly from the analysis 
of the output interferogram of a conventional SHFT spectrometer, 
circumventing the need to calculate the input spectrum. This 
training is performed for a specific chip, designed for conventional 
operation, with given fabrication imperfections (e.g. deviations in 
waveguide dimensions and splitting ratio) and a wide range of 
temperatures, rendering our system robust against these 
parameters. As a proof of concept, we experimentally demonstrate 
recognition of four different input spectra using the on-chip SHFT 
spectrometer presented in [5] (Fig. 1) but with unknown 
temperature within a 10 °C range (i.e. , a 100x increase compared 
to the original operational temperature range of the device).  

In SHFT spectrometers the output interferogram, I(xi), sampled 
at OPDs xi, contains spatially distributed interferometric 
information of the spectral density of the input signal B. Output 
interferogram and input spectrum are related by [5]:  

                          (1) 

where T is a transformation matrix containing the measured 
transmittance of each MZI. The input power spectrum B is 
retrieved by multiplying the spatial interferogram I(xi) by T+, 
which is a pseudoinverse of the transformation matrix T. While 
this approach corrects amplitude and phase errors produced by 
fabrication imperfections, the issue is that the matrix T strongly 
depends on the temperature. Thus, input spectrum retrieval 
requires accurate knowledge of the temperature or precise 
temperature stabilization to apply the correct T+ matrix. ML 
algorithms have already been used to optimize the calculation of 
the pseudoinverse of the matrix T [14]. However, these 
approaches do not address the temperature dependence issue.  

To overcome this challenge, we propose the application of ML 
techniques to build a mathematical model based on the analysis of 
the measured output interferogram I(xi), without retrieving the 
input spectrum B. We apply a supervised learning scheme that 
relies on a set of labeled samples (training data) to find the internal 
structure of the information, i.e., a pattern, and then predict the 
label or class of other samples (test data). In our case, the labels 
correspond to different known input spectra. The labeled data are 
the values of the output interferogram, measured when these 

known input spectra are coupled into the spectrometer with 
different unknown temperatures within a 10 °C range. The task is 
to train the ML algorithm on one subset of labeled data and be able 
to classify on multiple “unseen” datasets obtained in different 
experiments, with different temperatures. We resorted to 
supervised transfer learning based on support vector machine 
(SVM) and artificial neural network (ANN). These methods require 
low training and testing complexity even for very high dimensional 
features and have been proven to perform well when training data 
are scarce. 

 

Fig. 1. (a) SEM image of the spatial heterodyne Fourier-transform 
spectrometer under analysis. (b) Enlarged and detailed image of one 
Mach-Zehnder interferometer. (c) Effects of temperature variations in 
the spectral retrieval of a monochromatic input signal. 

To experimentally demonstrate the proposed approach, we 
used a SHFT micro-spectrometer fabricated on silicon-on-
insulator (SOI) wafers with 260-nm-thick silicon and 2 μm buried 
oxide (BOX) [5]. The device (Fig. 1) comprises an array of 31 
silicon waveguide MZIs in which the OPD is implemented through 
tightly coiled micro-photonic spirals of linearly increasing length 
up to 1.13 cm, with a maximum diameter of only 270 μm and 
minimum bend radius of 5 μm. Si-wire waveguides were selected 
to be 450-nm-wide x 260-nm-thick to ensure single mode 
operation and minimize scattering losses. Efficient sub-wavelength 
grating edge couplers [20] were integrated on the chip for fiber-
chip coupling, while at the same time reducing the Fabry-Perot 
cavity effect by minimizing the reflectivity at the facets. 
Waveguides were defined in a single patterning step by electron 
beam lithography using hydrogen silsesquioxane (HSQ) resist. 
Inductively coupled plasma reactive ion etching was used to 
transfer the resist pattern into the silicon layer. The resulting 
propagation losses in the waveguides were measured to be -4 
dB/cm and the bending losses in the spiral sections -1.7 dB/cm. 
We defined a target classification problem with four classes of 
output interferogram signals: the first three classes consist of 
single absorption lines at selected wavelengths within the free 
spectral range of the spectrometer (1549.8, 1550.0 and 1550.2 



nm), while the fourth class corresponds to a reference signal in 
which no absorption line is present (see Fig. 2). Even if as a proof-
of-concept we use a simple input spectrum, this is a challenging 
problem for FT spectrometers, as its interferometric nature 
implies that a change in a single input wavelength affects the whole 
output interferogram (as opposed, for example, to AWG or echelle 
gratings). Furthermore, we are using a wideband input in an 
experiment that comprises all the non-idealities in the integrated 
circuit, the fiber-chip coupling and the photodetection. For the 
generation of the input signals, a programmable spectral processor 
with a pass band of 750 pm and a tunable fiber Bragg grating 
(FBG) were used. The interferogram was measured for the TM-
polarization state, selected through an external polarization 
controller, and output light from the MZIs was collected by a 5x 
microscope objective and captured in a single shot with a high-
sensitivity InGaAs camera. 

 

Fig. 2. Optical spectrum of the three classes of output interferogram 
signals with single absorption lines at 1549.8 nm (a), 1550.0 nm (b) 
and 1550.2 nm (c) and of the reference signal without absorption line 
(d). The green shaded band corresponds to the 0.75 nm wide free 
spectral range of the spectrometer.  

In the experimental step only 28 interferometers (from MZI #2 
to MZI #29) could be measured simultaneously, due to the limited 
size of the camera’s detector area (see Fig. 3(a)). The values of the 
output interferogram were calculated by fitting a Gaussian to 
several adjacent pixel values around the position of the actual 
peak. We measured several interferograms for each input 
spectrum, while varying the temperature of the chip in a 10 °C 
range (from 20 °C to 30 °C) using a Peltier stage. Each 
measurement resulted in one data point that takes the form of a 
vector of 28 optical power values, I(xi) (Fig. 3(b)). We collected a 
total of 4655 data points for each of the four input spectra 
(classes). Half the data points were used for training and half for 
testing of the algorithm. 

For the SVM, we opted for the Gaussian kernel since it is the 
most popular general purpose function to transform the input data 
into a well-defined feature space. For the ANN, we trained the 
network with Broyden, Fletcher, Goldfarb, and Shanno (BFGS) 
quasi-Newton backpropagation and Levenberg-Marquardt 
backpropagation. The number of hidden layers we experimented 
ranged from 10 to 50. These were further refined through feature 

selection, i.e., determining which of the 28 optical values carried 
more weight in helping infer the correct class. 

 

Fig. 3. (a) High-sensitivity InGaAs camera image of the output of the 28 
MZIs at a temperature of 20 °C, (b) normalized output interferogram of 
the 28 MZIs at a temperature of 20 °C (upper panel) and 30 °C (lower 
panel), for a 1551.5 nm laser input signal. 

In order to demonstrate the classification challenge, we plot, 
from the testing set, the mean of the 28 optical power values I(xi) 
for each experiment (Fig. 4). Deviations in mean of measurements 
are apparent across samples/experiments, while the first three 
classes (single absorption lines) present very similar-valued 
datapoints. Class 4 is therefore expected to be most accurately 
classified, as it is less likely to be confused with other 3 classes 
which have similar power values. On the other hand, Classes 1, 2 
and 3 are more difficult to separate. 

 

Fig. 4. Magnitude of average power values for each of the 4 classes, 
1549.8 nm, 1550.0 nm, 1550.2 nm and no peak, respectively, 
measured in the 20-30 °C temperature range. 

Classification accuracy in ML is typically represented by the F1 
score which is a weighted average of precision and recall metrics, 
taking into account true positives (TP), false positives (FP) and 
false negatives (FN). Precision is given by TP/(TP+FP), i.e., the ratio 
of correctly predicted positive observations to the total predicted 
positive observations. Recall is the ratio of correctly predicted 
positive observations to all the observations in the actual class and 
is given by TP/(TP+FN). F1 score is then calculated for each class 
by 2*(Recall*Precision)/(Recall+Precision), and then the results 



are averaged over all four classes. In the first instance, classification 
was performed using the full vector of 28 spectrometer outputs. 
This resulted in an F1 score accuracy of 77.6% for SVM and 77.8% 
for ANN, when tested on 2327 x 4 data points. The best results for 
ANN were obtained when training was performed with 
Levenberg-Marquardt backpropagation with 35 hidden layers. 

Next, feature selection showed that filtering out the following 
MZI vector of measurements, resulted in the best performance: for 
SVM I(x3), I(x6), I(x9), I(x11), I(x16), I(x21), I(x24), I(x25) were filtered 
out and for ANN I(x23) was filtered out. Following feature selection 
and classification, we analyze the confusion matrix that shows 
which predictions were correct (TP) along the diagonal (i.e., actual 
vs predicted class 1, actual vs. predicted class 2 etc.), but also 
indicates which other classes were incorrectly classified or 
confused with each other. The improved results with feature 
selection are shown as confusion matrices in Tables 1 and 2, 
evaluated on the test set of 2327 x 4 data points and corresponding 
to accuracy of 81.3% and 82.5% for ANN and SVM, respectively. As 
expected from the observation in Fig. 4, both tables show that 
there is a not-insignificant misclassification of class 3 as class 2 
(Table 1) and class 2 as class 1 (Table 2), i.e., strong confusion in 
correctly identifying some samples in classes 1, 2 and 3. Similarly, 
class 4 is hardly misclassified as other classes (especially Table 2 
with zero misclassification). However, the diagonal line in both 
tables still indicates that both algorithms correctly classify the vast 
majority of all samples, showing robustness of the ML algorithms 
in correctly retrieving the spectra. Further improvements in 
accuracy and misclassification may be achieved in the future by 
exploring more advanced feature selection and classification 
methods, and by including additional measurements under 
varying environmental conditions. 

Table 1. ANN classification: best results confusion matrix. 

Predicted 
Actual   

class 1 class 2 class 3 class 4 

class 1 1782 383 161 1 

class 2 90 1869 318 49 

class 3 0 676 1647 1 

class 4 1 39 62 2222 

Table 2. SVM classification: best results confusion matrix. 

  Predicted 
Actual   

class 1 class 2 class 3 class 4 

class 1 1523 343 461 0 

class 2 361 1622 343 0 

class 3 133 5 2186 0 

class 4 0 0 0 2324 

 
In conclusion, this proof of concept has demonstrated the 

excellent potential of ML techniques for interferogram 
classification in on-chip FT spectrometers. While state-of-the-art 
spectral retrieval techniques for on-chip SHFT spectrometers 
require temperature control within 0.1 °C to retrieve input 
spectrum enabling feature classification, ML algorithms are 
capable of detecting the underlying characteristic signatures of 
absorption features at the input of the spectrometer, regardless of 
interferogram changes caused by environmental effects, and 
consequently, circumvent the stringent requirements on their 
thermal stabilization system. In particular, the accuracy of the 

popular supervised SVM and ANN algorithms have been studied in 
a SHFT spectrometer fabricated on silicon-on-insulator. The device 
under analysis comprises an array of 31 MZIs with microphotonic 
spirals of linearly increasing length in a footprint of only 12 mm2. 
The ANN and SVM methods successfully classified four different 
classes under varying temperature conditions, obtaining accuracy 
of 78% without feature selection. This value improves up to 82.5% 
with feature selection. Further improving the accuracy and 
processing more complex input spectra would require acquiring 
larger data sets, refining the feature selection and implementing 
advanced ML algorithms. Nevertheless, these results, obtained by 
the synergic combination of microspectrometers and ML, pave the 
way for future optimizations of classification accuracy yielding to a 
new generation of smart miniaturized silicon photonic sensors. 
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