135 research outputs found

    Framework and Extraframework Tin Sites in Zeolite Beta React Glucose Differently

    Get PDF
    Here, we show that framework tin sites in pure silica zeolite Beta (Sn-Beta) can isomerize glucose to fructose by a Lewis acid-mediated intramolecular hydride shift in aqueous solvent, but not in methanol solvent. Mechanistic studies using isotopically labeled (^(2)H, ^(13)C) glucose reactants show that in methanol, Sn-Beta instead epimerizes glucose to mannose by a Lewis acid-mediated intramolecular carbon shift mechanism known as the Bilik reaction. We also provide evidence that extraframework tin sites located within the hydrophobic channels of zeolite Beta can isomerize glucose to fructose in both water and methanol solvent, but through a base-catalyzed proton-transfer mechanism. SnO_2 particles located at external zeolite crystal surfaces or supported on amorphous silica catalyze isomerization in methanol but not in water, suggesting that contact with bulk water inhibits isomerization at SnO_2 surfaces. ^(119)Sn MAS NMR spectroscopy was used to unambiguously identify framework Sn sites, which give resonances for octahedral Sn (−685 to −700 ppm) in hydrated Sn-Beta that disappear upon dehydration, with the concomitant appearance of resonances for tetrahedral Sn (−425 to −445 ppm). In sharp contrast, spectra of hydrated samples containing extraframework SnO_2 show resonances for octahedral Sn centered at −604 ppm that do not change upon dehydration. These findings demonstrate that aldose–ketose isomerization reactivity on Sn-zeolite samples cannot be ascribed to the presence of framework Sn sites in the absence of isotopic labeling studies. They also indicate that any Sn-zeolite samples that initially convert glucose to fructose, instead of mannose, in methanol solvent contain Sn species that are structurally different from framework Sn centers

    Regioselective Baeyer-Villiger oxidation of lignin model compounds with tin beta zeolite catalyst and hydrogen peroxide

    Get PDF
    Lignin depolymerization represents a promising approach to the sustainable production of aromatic molecules. One potential approach to the stepwise depolymerization of lignin involves oxidation of the benzylic alcohol group in β-O-4 and β-1 linkages, followed by Baeyer-Villiger oxidation (BVO) of the resulting ketones and subsequent ester hydrolysis. Towards this goal, BVO reactions were performed on 2-adamantanone, a series of acetophenone derivatives, and lignin model compounds using a tin beta zeolite/hydrogen peroxide biphasic system. XRD, 119Sn MAS NMR spectroscopy, DRUVS and XPS were used to determine tin speciation in the catalyst, the presence of both framework Sn and extra framework SnO2 being inferred. Conversion of ketones to BVO products was affected by electron donation as well as steric hindrance, 4′-methoxyacetophenone affording the highest yield of ester (81%). As the size and complexity of the ketone increased, excess hydrogen peroxide was typically needed for successful BVO. Yields of ester products derived from β-O-4 and β-1 lignin models were modest due to the formation of polymeric material stemming from direct ring hydroxylation

    Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose

    Get PDF
    Framework Lewis acidic tin sites in hydrophobic, pure-silica molecular sieves with the zeolite beta topology (Sn-Beta) have been reported previously to predominantly catalyze glucose−fructose isomerization via 1,2 intramolecular hydride shift in water and glucose–mannose epimerization via 1,2 intramolecular carbon shift in methanol. Here, we show that alkali-free Sn-Beta predominantly isomerizes glucose to fructose via 1,2 intramolecular hydride shift in both water and methanol. Increasing extents of postsynthetic Na+ exchange onto Sn-Beta, however, progressively shifts the reaction pathway toward glucose–mannose epimerization via 1,2 intramolecular carbon shift. Na^+ remains exchanged onto silanol groups proximal to Sn centers during reaction in methanol solvent, leading to nearly exclusive selectivity toward epimerization. In contrast, decationation occurs with increasing reaction time in aqueous solvent and gradually shifts the reaction selectivity to isomerization at the expense of epimerization. Decationation and the concomitant selectivity changes are mitigated by the addition of NaCl to the aqueous reaction solution. Preadsorption of ammonia onto Sn-Beta leads to near complete suppression of infrared and ^(119)Sn nuclear magnetic resonance spectroscopic signatures attributed to open Sn sites and of glucose−fructose isomerization pathways in water and methanol. These data provide evidence that Lewis acidic open Sn sites with either proximal silanol groups or Na-exchanged silanol groups are respectively the active sites for glucose–fructose isomerization and glucose–mannose epimerization

    Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift

    Get PDF
    Carbohydrate epimerization is an essential technology for the widespread production of rare sugars. In contrast to other enzymes, most epimerases are only active on sugars substituted with phosphate or nucleotide groups, thus drastically restricting their use. Here we show that Sn-Beta zeolite in the presence of sodium tetraborate catalyses the selective epimerization of aldoses in aqueous media. Specifically, a 5 wt% aldose (for example, glucose, xylose or arabinose) solution with a 4:1 aldose:sodium tetraborate molar ratio reacted with catalytic amounts of Sn-Beta yields near-equilibrium epimerization product distributions. The reaction proceeds by way of a 1,2 carbon shift wherein the bond between C-2 and C-3 is cleaved and a new bond between C-1 and C-3 is formed, with C-1 moving to the C-2 position with an inverted configuration. This work provides a general method of performing carbohydrate epimerizations that surmounts the main disadvantages of current enzymatic and inorganic processes.National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Award DMR-0819762)DuPont MIT Alliance (Graduate Research Fellowship)National Institutes of Health (U.S.) (Grant EB-001960)National Institutes of Health (U.S.) (Grant EB-002026)National Science Foundation (U.S.). Graduate Research Fellowship Program (Grant 1122374

    Reaction of Glucose Catalyzed by Framework and Extraframework Tin Sites in Zeolite Beta

    Get PDF
    The isomerization of glucose into fructose is a large-scale reaction for the production of high-fructose corn syrup, and is now being considered as an intermediate step in the possible route of biomass conversion into fuels and chemicals. Recently, it has been shown that a hydrophobic, large pore, silica molecular sieve having the zeolite beta structure and containing framework Sn4+ (Sn-Beta) is able to isomerize glucose into fructose in aqueous media. Here, I have investigated how this catalyst converts glucose to fructose and show that it is analogous to that achieved with metalloenzymes. Specifically, glucose partitions into the molecular sieve in the pyranose form, ring opens to the acyclic form in the presence of the Lewis acid center (framework Sn4+), isomerizes into the acyclic form of fructose and finally ring closes to yield the furanose product. Akin to the metalloenzyme, the isomerization step proceeds by intramolecular hydride transfer from C2 to C1. Extraframework tin oxides located within hydrophobic channels of the molecular sieve that exclude liquid water can also isomerize glucose to fructose in aqueous media, but do so through a base-catalyzed proton abstraction mechanism. Extraframework tin oxide particles located at the external surface of the molecular sieve crystals or on amorphous silica supports are not active in aqueous media but are able to perform the isomerization in methanol by a base-catalyzed proton abstraction mechanism. Post-synthetic exchange of Na+ with Sn-Beta alters the glucose reaction pathway from the 1,2 intramolecular hydrogen shift (isomerization) to produce fructose towards the 1,2 intramolecular carbon shift (epimerization) that forms mannose. Na+ remains exchanged onto silanol groups during reaction in methanol solvent, leading to a near complete shift in selectivity towards glucose epimerization to mannose. In contrast, decationation occurs during reaction in aqueous solutions and gradually increases the reaction selectivity to isomerization at the expense of epimerization. Decationation and concomitant changes in selectivity can be eliminated by addition of NaCl to the aqueous reaction solution. Thus, framework tin sites with a proximal silanol group are the active sites for the 1, 2 intramolecular hydride shift in the isomerization of glucose to fructose, while these sites with Na-exchanged silanol group are the active sites for the 1, 2 intramolecular carbon shift in epimerization of glucose to mannose
    • …
    corecore