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ABSTRACT 

The isomerization of glucose into fructose is a large-scale reaction for the 

production of high-fructose corn syrup, and is now being considered as an intermediate 

step in the possible route of biomass conversion into fuels and chemicals. Recently, it has 

been shown that a hydrophobic, large pore, silica molecular sieve having the zeolite beta 

structure and containing framework Sn
4+

 (Sn-Beta) is able to isomerize glucose into 

fructose in aqueous media. Here, I have investigated how this catalyst converts glucose to 

fructose and show that it is analogous to that achieved with metalloenzymes. Specifically, 

glucose partitions into the molecular sieve in the pyranose form, ring opens to the acyclic 

form in the presence of the Lewis acid center (framework Sn
4+

), isomerizes into the 

acyclic form of fructose and finally ring closes to yield the furanose product. Akin to the 

metalloenzyme, the isomerization step proceeds by intramolecular hydride transfer from 

C2 to C1. Extraframework tin oxides located within hydrophobic channels of the 

molecular sieve that exclude liquid water can also isomerize glucose to fructose in 

aqueous media, but do so through a base-catalyzed proton abstraction mechanism. 

Extraframework tin oxide particles located at the external surface of the molecular sieve 

crystals or on amorphous silica supports are not active in aqueous media but are able to 

perform the isomerization in methanol by a base-catalyzed proton abstraction 

mechanism. Post-synthetic exchange of Na
+
 with Sn-Beta alters the glucose reaction 

pathway from the 1,2 intramolecular hydrogen shift (isomerization) to produce fructose 

towards the 1,2 intramolecular carbon shift (epimerization) that forms mannose. Na
+
 

remains exchanged onto silanol groups during reaction in methanol solvent, leading to a 

near complete shift in selectivity towards glucose epimerization to mannose. In contrast, 
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decationation occurs during reaction in aqueous solutions and gradually increases the 

reaction selectivity to isomerization at the expense of epimerization. Decationation and 

concomitant changes in selectivity can be eliminated by addition of NaCl to the aqueous 

reaction solution. Thus, framework tin sites with a proximal silanol group are the active 

sites for the 1, 2 intramolecular hydride shift in the isomerization of glucose to fructose, 

while these sites with Na-exchanged silanol group are the active sites for the 1, 2 

intramolecular carbon shift in epimerization of glucose to mannose.  
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Chapter 1: Introduction and Thesis Organization 

1. Biomass Conversion into Biofuels and Fine Chemicals 

1.1 Biomass Components 

Climate change and dwindling fossil fuel resources have made industry look at  

biomass as a renewable feedstock for the synthesis of chemicals and transportation 

fuels.
1
 Previous studies from the U.S. Department of Agriculture (USDA) and Oak 

Ridge National Laboratory calculated that the U.S. would be able to sustain producing 

1.3x10
9
 metric tons on an annual basis, resulting in an energy production of 3.8x10

9
 

barrels of oil.
2
 Since carbohydrates represent 75% of the annual renewable biomass,

3
 

chemical companies such as Shell, UOP, Petrobas, Conoco-Phillips, Dupont, Dow 

and BP are already using carbohydrates as part of their economy.
1
 Hence, developing 

new chemical synthetic routes from carbohydrates is of current interest for Industry. 

Currently, the catalytic transformation of biomass into fuels and chemicals is 

done by gasification, pyrolysis and hydrolysis.
4
 While gasification is achieved by 

means of biomass reaction with a controlled amount of oxygen and/or steam without 

combustion, pyrolysis is done via thermochemical decomposition of organic material 

at elevated temperatures in the absence of oxygen. In gasification a gas mixture is 

obtained, syngas (carbon monoxide, hydrogen and carbon dioxide), and in pyrolysis 

the products include biochar, bio-oil and gases (methane, hydrogen, carbon monoxide 

and carbon dioxide). In contrast, hydrolysis attempts to breakdown the polymers of 

biomass into its individual components.  

 Lignocellulosic biomass is the most abundant raw material available for the 

synthesis of biofuels, composed of 3 constituents:
5
 lignin (15-20%), hemicellulose 

(25-35%) and cellulose (40-50%). Lignin is an integral part of the plant secondary cell 
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walls,
6
 composed of three methoxylated monolignol monomers: p-coumaryl alcohol, 

coniferyl alcohol and sinapsyl alcohol. Hemicellulose is an amorphous polysaccharide 

found in the cell wall of plants, formed mainly of C5 (D-xylose and D-arabinose) and 

C6 (D-glucose, D-mannose and D-galactose) sugar monomers. Cellulose is a 

structural component from the primary cell wall of green plants, consisting of 

thousands of glucose units. The liberation of cellulose from the lignin composite and 

the breakdown of its rigid structure have been a priority in biomass research,
7
 since 

glucose together with xylose are considered as two important platform molecules for 

the biomass conversion into fuels and fuels additives, as can be seen in Figure 1.1. 

 

Figure 1.1 Biomass conversion into fuels and fuel additives
5
. 

2.2 Biomass Hydrolysis 

Liquid acid catalysts have been used in the hydrolysis of lignocellulosic 

biomass, with higher catalytic performance at low concentrations, higher temperatures 

and short residence times to avoid further degradation of its monomers.
8,9

 Inorganic 

Brønsted acids such as hydrochloric, sulfuric and phosphoric acid are very effective in 



4 

 

 

the depolymerization of lignocellulose, but the severe corrosion, costly separation and 

acid waste neutralization seem an expensive process.
4
 Carbonic acid seems to be more 

environmentally friendly, due to the low corrosion and depressurization of the carbon 

dioxide, resulting in no acid waste residues after reaction.
10,11

 Other alternatives have 

been the use of organic acids, such as oxalic and maleic acid,
12

 and ionic liquids, the 

latter being the most effective with nearly 90% yield of glucose from cellulose.
13

 

However, the high cost and low recyclability of ionic liquids prevent the scale-up of 

this process. 

Solid acid-catalyzed hydrolysis has the advantage of easy catalyst separation 

from the liquid mixture after reaction and its reusability. Sulfonated activated carbon 

results in a highly active catalyst for the hydrolysis of cellulose,
14,15

 with 40.5% 

glucose yields, in comparison to other solid Brønsted acids like zeolites, sulfonated 

zirconia and Amberlyst sulfonated resin . The strong acidity of the –SO3H functional 

groups together with the hydrophobic planes on the surfaces of the activated carbon at 

mildly hydrothermal conditions seem favorable for cellulose hydrolysis. Heteropoly 

acids are also active in the hydrolysis of cellulose, with 50.5% yield of glucose over 

H3PW12O40. However, the poor solid-solid interaction between the catalyst and 

cellulose results in a low activation of the -1,4-glycosidic bonds that connect the 

monosaccharides, leading to a moderate depolymerization. 

2.3 Biomass Applications 

For these simple sugars to be able to produce transportation fuels and 

chemicals, they need be broken down and have oxygen atoms removed without 

deteriorating their energy value.
3
 Although microorganisms seem to have found a path 

to convert the sugars into chemical compounds of interest,
16

 the relatively slow 
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kinetics of fermentation and the expensive post-processing of these products have 

made heterogeneous catalysis a viable option to develop a sustainable carbohydrate 

industry. 

Currently, “The Biofine”
17,18

 process is in pilot level production,  converting 

lignocellulose into platform molecule levulinic acid.
19

 In a first step, biomass 

hydrolysis into 5-hydroxymethylfurfural (HMF) takes place in a plug-flow reactor 

using sulfuric acid as a Brønsted acid for short residence times to minimize product 

degradation. In the second step, intermediates are converted into levulinic acid, 

separating the formic acid formed as well as the intermediates. The low efficiency of 

biomass converted into levulinic acid, 50% yield, has driven scientists to design 

catalysts and processes that are more efficient throughout the pathway described in 

Figure 1.1.  

Biphasic reactors can increase the selectivity of HMF and furfural (e.g., 90%) 

from fructose and xylose,
20–22

 respectively. In these cases side reactions, such as 

condensations, are minimized extracting the HMF or furfural from the aqueous layer 

using organic solvents like THF, 2-butanol or methyl isobutyl ketone. HMF is also 

considered a platform molecule for the synthesis of transportation fuels. 

Hydrogenolysis of HMF over Cu-Ru/C or CuCrO4 catalysts results in 79% and 61% 

yields of 2,5-dimethyl furan (DMF), respectively.
23

 Aldol condensation of HMF and 

furfural with ketones can be coupled with hydrogenation/dehydration over a Pd/MgO-

ZrO2 catalyst, obtaining high yields of condensation products.
24

 Nevertheless, HMF 

hydration produces equimolar amounts of formic acid and levulinic acid, the latter 

being a molecule in the selected list of platform molecules derived from biomass.
25
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Levulinic acid serves as the platform molecule for the synthesis of -

valerolactone (GVL), having to use external hydrogen. Levulinic acid is dehydrated 

into angelica lactone and reduced to -valerolactone, or reduced to 4-hydroxy-

pentanoic acid and subsequent dehydration.
5
 Using a Ru/C catalyst at 423 K and 34.5 

bar in dioxane, 97% yield of GVL is achieved.
26

 The in situ decomposition of formic 

acid (a byproduct in the synthesis of levulinic acid) to form hydrogen has been 

proposed as an alternative source.
19,27

 Monosaccharide conversion into GVL with 

external hydrogen or formic acid has been achieved using Ru/C catalyst together with 

trifluoroacetic acid,
28

 preventing the poisoning of the metal from other acids, like 

sulfuric acid. This process resulted in yields of 52% and 46% from D-fructose and D-

glucose, respectively, with formic acid and of 62% and 38% from same reactants with 

external hydrogen.
29

  

The applications of -valerolactone are varied, from being a platform molecule 

for the synthesis of fuels and chemicals to its direct use as a fuel additive or solvent.
30

 

Methyltetrahydrofuran (MTHF), a fuel extender which can be blended up to 70% with 

gasoline without modification of current internal combustion engines,
19

 can be 

synthesized by the reduction of GVL into 1,4-pentanediol and consequent 

dehydration,
31

  resulting in  63% yield of MTHF with  bimetallic catalyst Pd 

(5%)Re(5%)/C.
32

 The ring opening of GVL results in a mixture of pentenoic acids, 

the precursors in the synthesis of alkanes and alkenes. Ketonization of pentanoic acids 

and consequent hydrogenation forms C9 alkanes, while decarboxylation of a mixture 

of pentenoic acids leads to butenes that can be oligomerized to C8+ alkenes  

Liquid biofuels are also currently being produced from vegetable oils and 

animal fats which have a high content of tryglycerides.
33

 These triglycerides can go 
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through transesterification with methanol to produce biodiesel and glycerol as a 

byproduct. The 3 hydroxyl groups in glycerol can functionalize other molecules, 

producing acetals, ethers and polyglycerols among others.
5
 Transition metals, such as 

platinum and rhenium, supported on microporous materials
34,35

 or molybdenum 

supported on alumina
36,37

 are good catalyst for the hydrotreating of triglycerides to 

produce liquid alkanes.   

 

2. Introduction to Zeolites, Lewis Acids and Zeolite Sn-Beta 

2.2 Introduction to Zeolites and Molecular Sieves 

Zeolites are microporous inorganic materials with diverse applications in 

industrial relevant processes, ranging from petrochemical and purification processes 

to medicine and agriculture.
38

 Their structure arises from a three-dimensional network 

with pores and cavities between 0.2-2 nm in diameter formed by tetrahedral  

heteroatoms, mainly Si
+4

 and Al
+3

, coordinated through oxygen atoms.
39

 The defect 

charge resulting from the tetrahedral coordination of the Al
+3

 ions requires an extra-

framework cation to balance the net charge of the framework. These cations can be 

inorganic cations, organic cations, ammonium ions or protons, being in some cases 

the nature of the catalytic active site.
40

 This results in the following general formula 

composition of a zeolite: Al2O3·x SiO2·y H2O·M2/nO, being M the cation 

compensating the defect charge created by the alumina. A proton located in the 

proximity of  a framework aluminum introduces a strong Brønsted acid site, which is 

required in multiple catalyzed chemical reactions.
38

 

The topology and micropore system allows zeolites to be molecular sieves, 

selective in the size of reactants entering the framework as well as the products 
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leaving it. The inter-diffusion of molecules into the zeolite can be tuned by crystal 

size (ranging from 5-20 m), pore size distribution and number of different pore 

openings where molecules enter (one-, two, and/or three-dimensional pores). In 

addition, these pores are interconnected through cages and channels, resulting in a 

high surface area where active sites are situated, to enhance the rate of chemical 

reactions and selectivity to a desired product.
40

 Their physicochemical features 

together with the high hydrothermal stability and “nontoxic” character has originated 

in a wide application of zeolites in industry. 

Zeolites have been traditionally described as crystalline microporous 

aluminosilicates with the physicochemical abilities previously described. Over time, 

zeolite-type materials have been synthesized with different composition, having the 

same framework topology. The compositions of these materials are varied: silicates, 

silicoaluminophosphates, aluminophosphates, metallosilicates, etc. Although their 

physical properties are analogous to zeolites, their chemical features are different, 

providing a unique catalytic site for a desired reaction. Also, the electronic 

environment might change, like the case of defect free silicates with high 

hydrophobicity and low ion exchange capacity. 

The zeolite nomenclature is assigned to its topology with a three letter code, 

whether it is a natural or synthetic zeolite, designated by the International Union of 

Pure and Applied Chemistry (IUPAC) Commission on Zeolite Nomenclature and the 

International Zeolite Association (IZA). Zeolites with the same topology but with 

different chemical composition may be named differently. A well-known example of 

this is MFI, composed of a three-dimensional framework with 10 member ring mouth 

pores. The most common synthetic material with MFI topology is zeolite ZSM-5, 
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which can have different cations compensating the defect charge created by the 

aluminum, like a proton, and therefore, named H-ZSM-5. In addition, the isomorphic 

substitution  of metals in tetrahedral coordination of pure silicate MFI frameworks has 

led to different materials: titanium
41

 (TS-1), iron
42

 (FeS-1), Sn
43,44

 (Sn-MFI or Tin-

Silicate-1),… Due to the large number of zeolites, they have been divided in different 

groups according to the size of their mouth pores: small (8 or less member rings), 

medium (10 member rings), and large (12 member rings) and extra-large (higher than 

12). In the case of this work we will concentrate only on a large zeolite, zeolite beta, 

with isomorphically substituted Sn in tetrahedral coordination. 

2.3 Lewis Acids  

A Lewis acid is defined by the IUPAC as a molecular entity that is an electron-

pair acceptor and therefore able to react with a Lewis base to form a Lewis adduct, by 

sharing the electron pair furnished by the Lewis base.
45

 Figure 1.2 shows a typical 

schematic representation of a Lewis acid catalyst
46

 with a Lewis base, such as a 

carbonyl group. The cycle begins when the Lewis acid coordinates to the Lewis base 

with the formation of an adduct. The energy difference and degree of overlap between 

the occupied orbitals of the base and the empty orbitals of the acid is proportional to 

electron density transferred from the Lewis basic site to the Lewis acid site. In the 

case of a carbonyl group, the polarization increases the electrophilicity of its C atom, 

making it more susceptible to nucleophilic attack. Following the chemical 

transformation, the Lewis acid-complex dissociates.  
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Figure 1.2 Lewis acid catalyst schematic representation of a typical catalytic cycle
46

.  

 

The strength of a Lewis acid can be assessed with different theories. The 

charge and size of a Lewis acid cation is one of them. Those cations with higher 

positive charges and smaller size have a greater tendency to accept electrons.
47

 

Another theory is the hard-soft acid-base (HSAB) theory, where both Lewis acids and 

bases are divided into hard and soft groups.
48

 In the case for Lewis acids, small and 

low polarizable cations with highly localized charges are known to fall in the category 

of hard species ( like H
+
, Ti

4+
 and Sn

4+
), while those molecules that are large and 

polarizable with delocalized charges are considered soft species (like Cd
2+

, Ag
+
 and 

Au
+
). These theories have been established for homogeneous Lewis acids, being in 

some cases limited in their applications. Hence, numerical and quantum chemical 

calculations have been used.
49

 In the case of solid Lewis acids, the diversity in site 

distribution between Brønsted and Lewis acidity makes it harder to establish a strong 

relationship.
46

 

The efficiency of a Lewis acid is influenced by its interaction with the solvent 

media. In the presence of water, the reactivity of a Lewis acid is diminished. Upon 

dissolution in water, metal salts with strong Lewis acid character, such as AlCl3, TiCl4 
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and BF3, complex with water molecules forming aqua ions due to their ability to 

attract electron pairs.
50

 In the case of cations with oxidation states of 1, 2, or 3, these 

ions follow the chemical formula of (M(H2O)n)
z+

, where n is the solvation number 

(ranging from four to six) and z+ is the charge of the cation. Those cations with 

higher oxidation states will undergo hydrolysis reactions to produce hydroxide or 

oxide species, decreasing its Lewis acidity. Cations with higher electrical charge 

result in stronger bonds with water molecules and those with smaller radius have 

weaker bond interactions.
47

 Due to the efficiency decrease of Lewis acids in aqueous 

media, anhydrous conditions are preferred. 

 

2.4 Microporous and Mesoporous Lewis Acids 

Titanium silicate-1 (TS-1) was the first crystalline microporous material with 

isolated Lewis acid sites incorporated in a “zeotype” framework.
41

 In contrast to 

conventional zeolites, TS-1 does not have Brønsted sites. The isomorphic substitution 

of isolated Ti
4+

 sites in tetrahedral coordination with pure silica, in a bidirectional 

medium pore with MFI structure, gives TS-1 a unique Lewis acid character. TS-1 in 

aqueous hydrogen peroxide is currently used in varied industrial processes, including 

phenol hydroxylation, cyclohexanone ammoxidation, and propene oxidation 

synthesis.
51–53

 Since the framework is primarily silicon dioxide, it provides a unique 

hydrophobic environment capable to maintain activity in the presence of a bulk water 

phase. In consequence, using TS-1 derives in a greener and more efficient chemical 

process, in contrast to homogenous catalysts and expensive organic hydroperoxides or 

peracids. 

The selective oxidation of hydrocarbons with TS-1 is attributed to its isolated 

tetrahedral Ti atoms in MFI framework, coordinating to H2O2 to form a Ti-OOH 
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species. The Ti
4+

 center can act as a Lewis acid by using empty d
0
 orbitals to accept 

electron pairs from reactants.
46

 However, the topology of TS-1 (3-dimensional 10 

member ring with effective diameter of 0.55 nm) limits its application to non-bulky 

molecules which are not diffusion limited. Therefore, to accommodate larger 

substrates, titanium silicates with larger pore openings have also been synthesized. 

 Ti-Beta is also a Lewis acid microporous material with larger pore openings, 12 

member rings in a three-dimensional framework.
54

 Corma et al.
55

 have studied the 

hydrophobicity of Ti-Beta, changing the synthesis gel composition. Ti-Beta 

synthesized in fluoride media, Ti-Beta(F), is a hydrophobic microporous material with 

minimum internal defects having a fivefold coordination. The fluoride-containing 

media synthesis is at near neutral pH, increasing the stability and balancing the 

charges introduced by the organic structure directing agent. In contrast, Ti-Beta 

synthesized in hydroxide media, Ti-Beta(OH), leads to a more hydrophilic 

microporous material with a higher amount of internal defects having a highly six-

fold distorted coordination. The activity of both of these catalysts with the 

epoxidation of 1-hexene using methanol and acetonitrile as solvents, demonstrates the 

necessity of a highly hydrophobic media, preventing the deactivation of the Lewis 

acid site. 

 

Figure 1.3 Ti-silicates Ti-Beta(OH) (left) and Ti-Beta(F) (right) 
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The high activities of the Ti-containing silicates have led scientists to incorporate 

other metals in these frameworks, introducing different Lewis acid sites that could 

catalyze other reactions. Examples of these are tin (Sn),
56,57

 zirconium (Zr)
58,59

 in Beta 

and tantalum (Ta)
60

 and niobium (Nb)
61

 in MCM-41 . The introduction of these 

metals in the crystalline framework depends on the ionic radius of the metal, the 

rigidity of the zeolitic crystalline framework and the synthesis conditions 

(composition and pH).
40

 

2.5 Zeolite Sn-Beta 

Zeolite Beta is a large pore zeolite with a faulted intergrowth of two distinct  

zeolite frameworks: polymorphs A and B.
62

 These are composed of perpendicular 

channels, which intersect to form a three-dimensional array of cages with 12 ring 

apertures with mean diameters of 0.67 nm.
63

 Polymorph A results in a tetragonal 

crystal lattice with cages arranged in helical fashion around a fourfold screw axis, 

being either right or left-handed (space groups P4122 or P4322). In contrast, 

polymorph B is monoclinic C2/c having achiral structure. 

 

Figure 1.4 Zeolite Beta framework along {010}
64

. 
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Zeolite Sn-Beta was first synthesized by Corma et al.,
65

 having isolated Sn sites 

tetrahedrally coordinated to silicon atoms by oxygen bridges.
57

 This tin silicate was 

synthesized for the Baeyer-Villiger oxidation of ketones with hydrogen peroxide, 

H2O2, to form the corresponding lactones. Until the synthesis of Sn-Beta, other 

catalysts have increased the nucleophilicity of H2O2 to react with the ketone, binding 

the peroxide to other functional groups present in the molecule and, consequently, 

reducing the chemoselectivity towards lactones.
66

 Instead, activating the desired 

functional group (the carbonyl group of the ketone) with a Lewis acid seems a better 

idea to enhance the chemoselectivity to lactones. Therefore, the high electronegativity 

of Sn polarizes the carbonyl group making it more susceptible to a nucleophilic attack 

from the peroxide. In addition, the hydrophobicity and the Beta zeolite structure 

allows the diffusion of reactants through its large pores.
57

 Therefore, Sn-Beta is able 

to oxidize cyclic ketones to its corresponding lactones (Figure 1.5) with 30-95% 

conversions and almost 100% selectivity.
67

 Similarly, enriched R-enantiomer -

decalactone can be synthesized by oxidation of delfone with H2O2 in solvent free 

conditions.
68
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Figure 1.5 Proposed mechanism of the Baeyer-Villiger oxidation of cyclohexanone with hydrogen 

peroxide and catalyzed by Sn-Beta
69

.  

 The activation of a carbonyl group with Sn-Beta has also been used in other 

reactions. The Meerwein-Ponndorf-Verley reduction of aldehydes and ketones and 

Oppenauer’s oxidation of alcohols (MPVO reactions) requires a Lewis acid metal 

center to which both reactants (the aldehyde/ketone and alcohol) are coordinated, 

performing a hydride transfer from the alcohol to the carbonyl group.
70,71

 The high 

electronegativity of Sn makes Sn-Beta obtain high activity and selectivity in MPV 

reactions like the reduction of cyclohexanone with isopropanol or 2-butanol (Figure 

6), obtaining almost 100% conversion and selectivity.
72

  Although the presence of 

water in Sn-Beta decreases the activity,  surface organic modification can make the 



16 

 

 

catalyst more hydrophobic and good results are still obtained in the MPVO  reaction 

with 10% water in the reaction medium.
73

 

 

Figure 1.6 Proposed reaction mechanism for the MPV reaction using Sn-Beta catalyst
74

. 

Through a combination of theoretical and Infrared (IR) studies, Boronat et al.
69,75

 

suggest two types of Sn sites. The Sn centers could be bonded to four silicon atoms of 

the zeolite framework through bridging oxygens, being called the “closed” site, or the 

Sn centers could be bonded to three of these and one bond hydrolyzed becoming Sn-

OH, being called the “opened” site. The closed site happens to be 80% of the tin 

incorporated in the zeolite framework. They claim the open site is the more active one 

for several reasons: 1) lengthening the four Sn-Oframework distances is difficult in the 

zeolite through the donor-acceptor interactions between HOMO and LUMO of the 

adsorbed molecule and the catalyst, respectively, 2) the calculated adsorption enthalpy 

of the open site is higher than the closed site, and 3) the calculated distance from the 

carbonyl oxygen to the tin center is lower for the open site. In addition, by multishell 

fit to extended X-ray absorption fine structure (EXAFS) data, it is believed that a 

symbiotic relationship exists between the structure directing agent in the zeolite 

synthesis and the Sn heteroatoms during the framework formation, suggesting Sn to 

be located at T5/T6 sites of opposite sides of the six-member rings.
76
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In both the Baeyer-Villiger oxidation and MPV reaction, the “open” site plays a 

fundamental role as the active site,
69

 as it can be seen in Figure 1.5 and Figure 1.6. In 

the first case, the Lewis acid Sn atom activates the carbonyl group of the cyclic 

ketone, while the oxygen atom of the Sn-OH interacts with the H2O2 through 

hydrogen bonding to then attack the carbonyl group and form the corresponding 

lactone and water. In the second case, the Sn-OH aids in the hydride shift from the 

alcohol to the cyclic ketone, which are both bonded to the Sn atom, to form the 

corresponding ketone and cyclohexanol, respectively.
73,74

  

Sn-Beta has also been of current interest in aldol condensation for the fine 

chemical industry. The condensation of cyclohexanone with malonitrile results in the 

formation of cyclohexylidenemalononitrile with a 46% yields after 6 hours.
77

 Other 

applications of Sn-Beta with C6 and C5 sugars will be thoroughly discussed in the 

following chapters. 

3. Motivation and Thesis Organization 

In the first section of this chapter a review has been presented on the conversion 

of biomass into liquid biofuels. 5-hydromethylfurfural (HMF), levulinic acid and -

valerolactone (GVL) have been extensively applied as platform molecules in the 

different routes (dehydration, decarboxylation, hydrogenation…) for the synthesis of 

transportation fuels. The limiting factor of these pathways is the low carbon balance 

reached up to these platform molecules. In the Biofine process, there is a 50% mass 

loss corresponding to the mass of C6 sugars.
19

 Therefore, a higher yield will be needed 

in the conversion of C6 sugars into the platform molecules to make biomass an 

efficient raw material in the synthesis of transportation fuels.  
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The conversion of cellulose into the platform molecules mentioned goes through 

fructose, an isomer of glucose which is more reactive. Previous to the beginning of 

this thesis work, Sn-Beta showed superior activity in the conversion of glucose into 

fructose in solvent water,
78

 competing with the industrial process which uses a 

metalloenzyme. Herein, we study the isomerization of glucose into fructose and 

epimerization of glucose into mannose with framework tin and extraframework tin 

sites in zeolite beta to understand the activity of these. In addition, both of these Sn 

sites can cause carbon-carbon cleavage in glucose and fructose, to form different 

carboxylic acids which are of interest in the synthesis of biopolymers. 

In Chapter 2 the isomerization of glucose into fructose with Sn-Beta zeolite is 

discussed, highlighting the applications of such system in comparison to enzymes 

which are not active at high temperature and low pH. The active site of Sn-Beta is 

studied by Solid State Nuclear Magnetic Resonance (SS NMR), with corresponding 

results as those seen previously through infrared spectroscopy. The reaction pathway 

of the glucose isomerization into fructose with zeolite Sn-Beta is elucidated. Finally, 

the formation of mannose with Sn-Beta is identified as a byproduct formed from 

fructose. 

In the following chapter, Chapter 3, extraframework tin sites, located within the 

hydrophobic channels of zeolite Beta, show the isomerization of glucose to fructose in 

both, water and methanol through a different mechanism, as the one seen by 

framework Sn. SnO2 particles, located at external zeolite crystal surfaces or supported 

on amorphous silica, catalyze isomerization in methanol but not in water, suggesting 

that contact with bulk water inhibits isomerization at SnO2 surfaces. In addition, the 

types and locations of the Sn site are discussed through X-ray diffraction, N2 

adsorption, 
119

Sn SS NMR and UV-VIS diffuse reflectance. 
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In Chapter 4, the neighboring silanol group of the open Sn site is examined, 

exchanging its proton with a sodium cation, Na
+
, to enhance the epimerization rate. 

Na-exchanged Sn-Beta catalyzes the epimerization of glucose to mannose in methanol 

and in concentrated NaCl aqueous solutions via a 1, 2 carbon shift, while in water, the 

Na
+
 leaves the active site, reverting to the isomerization of glucose into fructose. The 

data and the mechanistic evidence presented herein show a shift in the pathway to the 

epimerization into mannose with a new Lewis acid site. In this chapter Ricardo 

Bermejo-Deval and Marat Orazov equally contributed to this work. 

 In Chapter 5, glucose with Sn-Beta at longer reaction times, 2-10 hours, is 

shown to be an active catalyst in the synthesis of lactic acid and methyl lactate from 

glucose in solvent water and methanol, respectively. These two products result from 

the retro-aldol condensation from fructose. However, glucose can analogously form 

undesired byproducts vinylglycolic acid and methyl vinylglycolate in solvent water 

and methanol, respectively. In contrast, extraframework SnO2/Si-Beta, selectively 

forms lactic acid over vinylglycolic acid in water and methyl lactate over methyl 

vinylglycolate in methanol. With the use of 
13

C as an isotopic tracer at different 

positions of the glucose backbone, the mechanism of the formation of lactic acid and 

vinylglycolic acid is elucidated. 

 Finally, in Chapter 6, an overall conclusion of the thesis will be presented, 

discussing the different isomerization and epimerization reactions with Sn-Beta and 

SnO2/Si-Beta at short reaction times, and retro-aldol reactions at long reaction times. 

In addition, future research will be outlined to gather a better understanding on the 

glucose reactions with Lewis acid silicates at short and long reaction times. 
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Chapter 2 : The Glucose Isomerization into Fructose Reaction Pathway with        

Sn-Beta 

1. Introduction 

There is at present a growing interest in the use of renewable carbon sources 

for the production of chemicals, polymers and fuels. As a result, numerous chemical 

transformations of biomass into a wide variety of products are currently being 

explored. The Davis group has been focusing on the isomerizations of sugars, and in 

particular, the isomerization of glucose to fructose (Figure 2.1),
1–3

 as a key reaction 

that could be incorporated into a large number of pathways to convert biomass into 

useful products.
4,5

 For example, oligomeric carbohydrates can be depolymerized into 

glucose monomers, that can then be converted to the chemical platform molecule 5-

hydroxymethylfurfural (HMF),
4,5

 via the fructose intermediate.
3
 Analogously, xylose 

has been converted to furfural via the xylulose intermediate.
6
 Additionally, the 

isomerization of glucose to fructose could be a step further in creating a synthetic 

glycolysis pathways.
7
  

 

 

Figure 2.1 Schematic representation of the glucose isomerization into fructose. 

In the presence of a base catalyst, such as sodium hydroxide, isomerization 

and epimerization of glucose occurs at 313K. The abstraction of the -carbonyl 

protons in glucose results in a tautomeric enediol which forms fructose and mannose 
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after re-protonation  (Lobry de Bruyn-Alberda van Ekenstein rearrangements, LdB-

AvE).
8,9

  Due to the instability of the monosaccharides in alkaline media at 313K or 

above, longer residence times lead to 2,3- and 3,4-enediols that are precursors of other 

ketohexoses and other aldohexoses, in addition to retro-aldol fragmentation and 

degradation reactions.
10–13

 Therefore, high fructose selectivities (> 90%) are only 

reached at low glucose conversions (< 10%), making base catalysts bad candidates for 

large-scale glucose processing. 

The conversion of glucose to fructose for the production of high-fructose corn 

syrup is accomplished commercially by immobilized enzyme catalysts, such as D-

xylose isomerase (XI).  Reaction mechanisms for XI-mediated isomerizations have 

been investigated for some time because of their relevance to glycolysis and industrial 

biocatalysis.
14

 It is well established that the aldose to ketose interconversion occurs by 

a three-stage mechanism after binding of the glucose cyclic form takes place. These 

steps are: (i) aldose ring opening to set the acyclic form of the sugar, (ii) aldose to 

ketose isomerization of the linear sugar at C-1 and C-2 via a metal assisted hydride 

transfer; and (iii) ring closure to release the cyclic form of the ketose.  Similarly, it has 

been shown that this metalloenzyme requires two divalent metal ions (M1 and M2) 

for the enzyme to be active. The preferred metal ions are Mg
+2

 or Mn
+2

. Only 

recently, complementary X-ray and neutron diffraction techniques aimed at probing 

the location and dynamics of H/D atoms in XI crystal structures have been exploited 

to reveal unique insights of the enzyme reaction mechanism.
15

 Three important new 

features have been elucidated: 1) the primary role of M1 (in conjunction with specific 

amino acid residues) is to destabilize the pyranose structure and promote the ring 

opening of the sugar, 2) M2 binds and stabilizes O1 and O2 on the acyclic sugar, 

promoting the hydride shift from C2 to C1, and c) a hydroxyl group bound to M2 is 
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responsible for the deprotonation/protonation sequences that shuttle protons involved 

in the interconversion of aldehydes and hydroxyl groups between O2 and O1. 

Previous to the beginning of this thesis work, the Davis group had shown that 

the isomerization of glucose to fructose could be catalyzed in aqueous media by 

hydrophobic zeolites that contain Lewis acids.
1–3

 Specifically, pure-silica zeolites 

with the zeolite beta structure containing small amounts of framework Ti
4+

 or Sn
4+

 

(denoted as Ti-Beta and Sn-Beta, respectively) are able to isomerize glucose to 

fructose in high yield at relatively low temperatures (383-413 K), as it can be seen in 

Figure 2.2. The Sn-Beta sample has superior activity to the Ti-Beta material and can 

even convert solutions that contain 45wt% glucose.
1
 The much lower isomerization 

activity with medium-pore zeolites indicates how much the properties of the large-

pore zeolite influence in the reaction. Increasing the pore size, with metal centers 

incorporated in the silica framework, to ordered mesoporous silica MCM-41 also 

decreased the isomerization activity. The high activity in an acidic environment (pH = 

2), enables the coupling of glucose isomerization into fructose and other acid-

catalyzed reactions in a one pot reaction. In addition, Sn-Beta maintains its original 

activity after four consecutive isomerization cycles at 383K for 30 min each.  
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Figure 2.2 Glucose isomerization reaction catalyzed by various metal-containing solids under the 

following reaction conditions:
1
 10% (wt/wt) glucose in water, 413K, 90 min and 1:50 

metal:glucose molar ratio. Glucose conversion is in black and fructose selectivity is in white. 

Consequently, it was demonstrated that the reaction mechanism in aqueous 

media was a truly Lewis acid-mediated intramolecular hydride shift.
2
 With the use of 

deuterium as an isotopic tracer in the C-2 position of glucose, both liquid 
13

C and 
1
H 

NMR show the shift of the deuterium atom to the C-1 position of fructose. 

Additionally, kinetic experiments reveal a kinetic isotope effect of approximately two, 

indicating that the intramolecular hydride shift is the rate limiting step of the reaction. 

Hence, the redistribution of the oxidation states, between carbon atoms in the 

Meerwein-Ponndorf-Verley (MPV) aldehyde and ketone reduction within the 

hydrophobic micropores of Sn-Beta is equivalent to the C-1 and C-2 position of the 

monosaccharide.
16,17

 In contrast, the base-catalyzed isomerization loses its proton in 

the C-2 position of glucose to form the corresponding enolate, reincorporating 

subsequently a proton from the solution into the molecule. 
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Figure 2.3 Schematic representation of the intramolecular hydride shift in the isomerization of 

glucose into fructose with Sn-Beta catalyst in water.
2
 

Additionally, it has been shown that the catalyst activity is maintained in 

aqueous media saturated with sodium chloride and acidic pH.  This allows for the 

“one pot” conversion of starch to HMF through a reaction sequence, namely 

involving: the homogeneous acid-catalyzed depolymerization of starch to glucose, the 

heterogeneous Lewis acid-catalyzed isomerization of glucose to fructose and the 

homogeneous acid-catalyzed dehydration of fructose to HMF.
3
 The high selectivities 

to HMF (over 70%) with this “one-pot” biphasic water/tetrahydrofuran (THF) reactor 

system opens up the possibility of complex carbohydrate conversion to HMF. 

 The activation of carbonyl-containing molecules-more specifically sugars, by 

solids containing Lewis acid centers is a new area of heterogeneous catalysis. In 

addition to the isomerization of glucose in aqueous media,
1–3

 the isomerization of 

triose sugars in methanol or water
18

 and the conversion of sugars to lactic acid 

derivatives in methanol have been reported using Sn-containing porous solids.
19

 

Activation of carbonyl-containing molecules with solid acids has recently been 

reviewed, including the limited data on solid Lewis acid catalysis (especially in 

aqueous media).
20

  Sn-Beta and Ti-Beta reveal a number of analogous behaviors to 

metalloenzymes when isomerizing glucose. Given the potential significance of this 

emerging area of heterogeneous catalysis, it is important to gain further fundamental 

understanding of the reaction pathways using these solids. In this chapter, the glucose 
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isomerization reaction catalyzed by hydrophobic zeolites that contain Lewis acid 

centers is investigated using a number of experimental techniques. The goal of this 

work is to provide a fundamental understanding of the reaction pathway from an 

experimental perspective and to elucidate whether or not the entire reaction pathway 

shows further analogy to the metalloenzyme pathway.  

2. Results and Discussion 

2.1 The Ring Opening  

The initial step in the enzymatic isomerization of glucose to fructose involves 

the ring opening of a glucose molecule at M1 (one of the two metal sites in the 

metalloenzymes).
15

  In order to determine if a similar pathway was followed by Sn-

Beta, the absorption of 
13

C labeled glucose and fructose into Sn-Beta and Si-Beta 

(used as control) was investigated using 
13

C NMR. Spectra obtained from glucose and 

fructose adsorbed into Si-Beta showed that the sugars were in their cyclic 

configurations (resonances between 100 and 90 ppm are assigned to the alpha and 

beta anomers of the pyranose and furanose rings). No new resonances were observed 

when compared to the spectra of pure glucose or fructose solutions.  Conversely, upon 

adsorption of these sugars in Sn-Beta, new resonances at ca. 130, 180 and 214 ppm 

appeared. The resonance at 214 ppm was at the chemical shift reported for the keto 

carbonyl carbon of the acyclic form of fructose.
21

 Cross polarization (CP) experiments 

with variable contact times were consistent with an assignment of a keto group for the 

214 ppm resonance (Figure 2.4). The CP method is based on 
1
H-

13
C heteronuclear 

dipolar coupling so the 
13

C signal strongly depends on their internuclear distance. 

Appearance of the 214 ppm resonance only at longer contact times (0.1 and 1.0 ms) 

unambiguously ruled out the possibility of the carbonyl carbon having a direct C-H 

bond as in an aldehyde. Quantitative NMR measurements performed on adsorbed 
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fructose samples revealed that the amount of the acyclic form is on the same order of 

magnitude as the amount of Sn present in the sample. Because of the errors in the 

elemental analyses and NMR experiments, greater precision on the estimate of the 

amount of the acyclic form was not possible. These measurements indicate that ca. 

5% of the fructose was in the acyclic form. This amount is approximately an order of 

magnitude larger than what is observed in solution.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Left: (a) glucose adsorbed into Si-Beta, (b) fructose adsorbed into Si-Beta, (c) glucose 

adsorbed into Sn-Beta, (d) fructose adsorbed into Sn-Beta. Right: spectra from fructose adsorbed 

into Sn-Beta, (a) cross polarization contact time of 0.1 ms, (b) cross polarization contact time of 

1.0 ms, and (c) no cross polarization. 

 

IR measurements reveal the presence of a carbonyl band at ca. 1728 cm
-1

 that 

has been assigned previously to the keto carbonyl of the acyclic form of fructose 

(Figure 2.5). Altogether, these data provided direct evidence for the presence of ring 

opened fructose molecules in Sn-Beta, suggesting that Sn not only was necessary to 

observe the acyclic form of fructose, but also played an important role in stabilizing 

the acyclic form of fructose.  
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Figure 2.5 Infrared spectra of glucose and fructose adsorbed in Sn-Beta and Si-Beta. The band at 

1775 cm
-1

 was not assigned to either the ketone or aldehyde groups of the acyclic fructose and 

glucose, respectively. 

The acyclic form of glucose would produce an aldehyde with a chemical shift 

around 205 ppm.
22

 This resonance was not observed in the glucose adsorption 

experiments. Certainly, if the acyclic forms of glucose and fructose were present in 

similar proportions as in solution, acyclic glucose would be two-orders of magnitude 

lower in concentration than acyclic fructose and could not be detected by solid-state 

NMR.
22

  Note that the 214 ppm was present in the sample where glucose was 

adsorbed into Sn-Beta, in an amount that corresponds to approximately 30% of the 

amount observed in the fructose adsorption experiment (Figure 2.6).  
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Figure 2.6 
13

C Solid-State NMR spectra of glucose adsorbed in Sn-Beta. 

The existence of this resonance implied that some of the glucose had ring 

opened (being able to occupy other Sn sites) and isomerized to the ring open form of 

fructose. In fact, when this sample was re-analyzed after several months of storage at 

room temperature, the reaction proceeded further.  These NMR data strongly 

supported the proposed ring open reaction pathway, thus impliying that initial Sn-Beta 

pathways parallel the initial reaction steps observed in enzymatic systems. While 

there was an IR assignment of the keto carbonyl of the acyclic form of fructose, no 

assignment for the acyclic aldehyde carbonyl of glucose has been reported. However, 

when glucose was adsorbed on Sn-Beta, (but not Si-Beta) there was a broad band at 

ca. 1730-1720 cm
-1

 that was reasonable to assign to the combination of the 1728 cm
-1

 

band from the acyclic fructose and a band from the aldehyde carbonyl (ca. 1720 cm
-1

) 

of the acyclic glucose (Figure 2.5). These band intensities and assignments were 

consistent with the 
13

C NMR results. Overall, the NMR and IR data from both glucose 

and fructose adsorbed in Sn-Beta suggested that the reaction pathway paralleled the 

reaction steps observed in enzymatic steps.   
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At this time, the resonances at ca. 130 and 180 ppm have not been assigned 

yet. After reaction with either 
13

C labeled glucose or fructose, these resonances appear 

as do others (Figure 2.7). The reaction of glucose on either Sn-Beta or Ti-Beta gave 

ca. 90% yields of glucose, fructose and mannose.
1
 From the NMR spectra of the 

solids after reaction, some of the resonances were assigned to products that could be 

observed in solution, or remain on the solid and are not observed in solution (Figure 

2.7). Further attempts to assign the remaining products in solution and on the solids 

will be discussed in Chapter 5. 

 

Figure 2.7 
13

C Solid-State NMR of Sn-Beta after reaction condition using either labeled fructose 

(a) or labeled glucose (b) as the reactant. Also, HMF adsorbed into Sn-Beta (c) and lactic acid 

adsorbed into Si-Beta (d) at room temperature were shown for comparison. 

 

2.2 Isomerization Step 

The enzymatic isomerization step is believed to occur primarily at M2.  First, a 

hydroxyl ion bound to M2 promotes deprotonation at O2.
23

 Next, M2 forms a 

bidentate complex with both O1 and O2, withdrawing electron density from the C-O 

bonds and effectively polarizing the substrate. This leads to a partial positive 

character on C1, consequently reducing the energetic barrier for hydride shift. Finally, 
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the protonated hydroxyl group at M2 donates the proton to O1, converting the 

aldehyde into a hydroxyl group.   

Kinetic studies on enzymatic systems suggested that the kinetically limiting 

factor is the hydride shift. Interestingly, a similar conclusion could be drawn for the 

isomerizations with Sn-Beta and Ti-Beta. Previously, it has been shown that the 

mechanism of the glucose isomerization reaction using Sn-Beta involves a Lewis 

acid-mediated intramolecular hydride shift
2
. A kinetic isotope effect of ca. 2 for both 

Sn-Beta
2
 and Ti-Beta is observed using glucose labeled with deuterium at the C2 

position. Activation energies were obtained from initial rate data of glucose to 

fructose isomerization (Figs. S3 and S4) were 21.2 +/- 0.7 kcal/mol (343-373K) and 

37.1 +/- 1.0 kcal/mol (388-403K) for Sn-Beta and Ti-Beta (obtained from Eranda 

Nikolla, a former Post-Doc in the M. E. Davis group), respectively.  These data show 

that the hydride step is kinetically relevant and that Sn-Beta has a higher activity than 

Ti-Beta at the reaction conditions used.   

 

Figure 2.8 Arrhenius plot for glucose isomerization over Sn-Beta. 
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 The kinetic parameters were used to confirm if the reaction was possible at 

room temperature (25ºC), when 
13

C glucose was adsorbed on Sn-Beta. Under the 

same reaction conditions it was estimated that during the period of 1-4 days, the 

glucose conversion was in between 0.15-0.63%. Since the rate limiting step is the 

intramolecular shift, no glucose conversion should be happening at room temperature. 

Since isomerization is observed through 
13

C NMR, it does not seem that the results 

are the same for lower temperatures. 

2.3 Reaction Centers with Sn or Ti Containing Zeolite 

The reaction pathway over Sn-Beta and Ti-Beta proceeded via a ring opening, 

hydride shift, and a ring closing mechanism. To gain further insights into how these 

conversions proceeded at the metal centers, the state of the Sn in the zeolite was 

investigated by solid-state NMR methods. Different atomic arrangements of 

framework Sn were depicted in Figure 2.9.  Framework Sn can exist in two different 

states, octahedral or tetrahedral, depending on whether it is hexacoordinated or 

tetracoordinated.  Also, Boronat et al.
24

 proposed that framework Sn can be located in 

two different types of sites, closed or open, depending if the Sn centers have four 

bonds to the silicon atoms of the zeolite framework through bridging oxygens or if the 

Sn centers have three such bonds to the framework and one bond that has been 

hydrolyzed to produce Sn-OH and an adjacent silanol group (Si-OH). These atomic 

arrangements are analogous to those proposed for Ti in Ti-Beta and Ti in pure-silica 

ZSM-5 (called TS-1).
25

 For the case of Ti, no NMR data is available; however, 

EXAFS data provide strong evidence for the open site.
25

 Additionally, IR spectra can 

be used to identify the silanol group adjacent to the Ti center in the open site.   
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Figure 2.9 Schematic representations of the closed (top) and open (bottom) sites in Sn-Beta. Left: 

dehydrated (tetrahedral), right: hydrated (octahedral). 

119
Sn solid-state NMR studies of the Sn-Beta prepared with 

119
Sn enriched 

starting materials are shown in Figure 2.10, Figure 2.11 and Figure 2.12.  These had 

the structure directing agent (SDA) removed by calcination and were exposed to 

ambient conditions. The NMR spectrum revealed the presence of octahedral Sn (main 

resonances at ca. –685 and  –700 ppm; Figure 2.10 and Figure 2.11). Upon heating to 

393 K under vacuum, water was removed and the dehydrated spectrum showed the 

presence of tetrahedral Sn (main resonances at ca. -420 to -443 ppm; Figure 2.10 and 

Figure 2.11). Re-exposure to ambient conditions returned the Sn to its octahedral 

state. The calcination conditions affected the spectra that were obtained after 

dehydration, thus suggesting that the ratio of the -420 ppm resonance to -443 ppm 

resonance could vary with the pre-treatment conditions (compare Figure 2.10 and 

Figure 2.11). 
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Figure 2.10 
119

Sn Solid State NMR spectra of Sn-Beta after different treatments. (a) calcined, (b) 

dehydrated after calcination, (c) rehydrated after step (b). The spinning rate was 14 kHz and 

spinning sidebands were marked by *. 

 

Figure 2.11 
119

Sn MAS NMR spectra of Sn-Beta as a function of hydration. (a) Sample was 

calcined with more humid conditions and exposed to ambient conditions, and (b) sample shown 

in (a) after vacuum drying at 393 K. The spinning rate was 14 kHz and spinning sidebands were 

marked by *. 

 

Corma and co-workers have shown that hydrated Sn-Beta has octahedral Sn 

while dehydration can change the Sn coordination to tetrahedral,
26

 having only one 

resonance. By correlating the intensity of the IR band assigned to the acetonitrile 

adsorbed on the open site (as a measure of the amount of the open site) to the initial 

catalytic activity of the Baeyer-Villiger oxidation of cyclic ketones, these workers 

concluded that the open Sn site was the active center for this reaction.  In contrast, 

119
Sn NMR showed there were two main resonances, i.e., the tetrahedral Sn centers. 
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These results could be due to differences in calcination conditions. Diffuse reflectance 

UV-Vis confirmed the Sn remained within the framework of the zeolite (Figure 2.23). 

Cross-polarized NMR spectra with variable contact time (Figure 2.12) showed that 

only one of the Sn environments had a proton source in its neighborhood. Therefore, 

based on the fact that the Sn atoms were located in the zeolite framework, the 

resonance at -420 and -443 ppm were assigned to the open and closed site, 

respectively, for the dehydrated Sn-Beta. Upon hydration, these tetrahedral Sn centers 

coordinated two additional water molecules to become octahedral (Figure 2.9). Thus, 

the Sn-Beta, and by analogy Ti-Beta, will have both open and closed sites that may be 

active reaction centers. 

 

Figure 2.12 
119

Sn MAS (a) and CPMAS NMR (b-d) spectra for dehydrated Sn-Beta. The cross 

polarization contact times from 1H to 119Sn were varied: b) 0.2 ms, c) 1.0 ms, d) 2.0 ms. The 

spinning rate was 14 kHz for the MAS spectrum and 10 kHz for the CPMAS spectra, and 

spinning sidebands were marked by *. 

 

 TS-1 is not active for the isomerization of glucose; however, this occurs 

presumably because glucose (kinetic diameter ca. 0.8 nm) is too large to diffuse into 

the pores of this zeolite (pore diameter ca. 0.55 nm).
1
 To test this hypothesis, the 

isomerization of erythrose to erythrulose was employed as a test reaction using a 
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reactant that could diffuse into the pores of TS-1. This Ti silicate was active for the 

isomerization of erythrose, supporting the premise that glucose diffused into the 

zeolite catalysts in the ring-closed (pyranose) form, and that the ring-closed form is 

too large to diffuse into TS-1.  

 

 

Figure 2.13 Isomerization of erythrose to erythrulose with Sn-Beta 

 

 To further investigate the nature of the active Sn site, Sn-containing zeolite 

beta was prepared using trichloromethyltin as the Sn source (denoted as CH3Sn-Beta, 

powder X-ray diffraction pattern in Figure 2.24). Calcination of CH3Sn-Beta provided 

an active glucose isomerization catalyst that was no different from the Sn-Beta 

samples prepared from tin tetrachloride Figure 2.14. The similar reactivities of these 

two samples suggested that the amounts of both the open and closed sites were 

predominantly a function of the high temperature calcination conditions (upon loss of 

the methyl group the tin center would have an OH group that could then condense 

with the adjacent silanol group to give a closed site for some of the tin centers in 

CH3Sn-Beta). 
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Figure 2.14 Glucose isomerization reactivity with Sn-Beta and CH3Sn-Beta. White: Glucose; 

Grey: Fructose; Black: Mannose. Reaction conditions: glucose:Sn = 100:1, 110 
o
C, 45 min. 

 In an attempt to alter the distribution of the Sn sites, the as-synthesized 

CH3Sn-Beta was first exchanged into the sodium form and then calcined (attempt to 

limit condensation by reducing the number of available silanol groups adjacent to the 

open Sn center). The reaction rates for this sample were virtually identical to those 

obtained with the non-exchanged sample. Based upon these results alone, it cannot be 

conclusively defined which site was in fact the active site or whether both sites were 

active. These results strongly suggested that the calcination and initial exposure to the 

reaction environment interconverted the distribution of the tin centers between the 

open and closed sites, bringing them to an equilibrated state dictated by the reactions 

conditions or that the reactivity of the two types of sites were the same (highly 

unlikely). This hypothesis implied that the distribution of open and closed sites was 

dynamic at reaction conditions, requiring the development of an in-situ method for 

determining site distributions.  Such a characterization technique was not available, 

and thus theoretical studies from another group (Page 60) were used in order to gain 

further insights into the nature of the active site. 



43 

 

 

2.4 The Formation of Mannose 

In the glucose isomerization into fructose with Sn-Beta in water, mannose is 

being formed at glucose conversions of 10% or higher.
1
 10% mannose yield is 

obtained with temperatures ranging in between 363-413 K, with 10% (wt/wt) glucose 

in water and 1:50 Sn:glucose molar ratio. The small concentration of mannose makes 

it difficult to understand whether this C-2 epimer of glucose molecule is a side 

reaction of glucose, fructose or both. Therefore, the formation of mannose was 

studied to identify the side/s reaction/s. This was done by modeling the conversion 

and formation of the three hexoses assuming the scheme presented in Figure 2.15, 

where mannose was reversibly formed from both glucose and fructose. In addition, 

sink reactions were included for the three hexoses, since retro-adol reactions are seen 

upon longer reaction times.
27

 

 

Figure 2.15 Reaction scheme in the model of the hexoses isomerizations 
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 In this model, concentration profiles were measured starting from each of the 

hexoses at 100ºC with a 100:1 hexose:Sn ratio. These were measured in a batch 

stirred reactor, extracting an aliquot every ten minutes for an hour. Hence, for an 

ideal, constant volume, batch stirred reaction the mole balances for each of the 

hexoses, cG (glucose concentration) cF (fructose concentration) and cM (mannose 

concentration), can be expressed as:  

                                                           
      

  
    ∑    

 
    

 

 
                                              Eq. 2.1 

where rj is the net rate (per metal site) of the j reaction shown in Figure 2.15, i is the 

stoichiometric coefficient of each of the hexoses (-1 for the reactant and 1 for the 

products), M is the total number of metal sites in the reactor, and V is the reactor 

volume. Both forward and reverse reactions were assumed first order for each of the 

hexoses leading to the following glucose, fructose and mannose mole balances: 
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2.4 

Where K1, K2 and K3 are the equilibrium constants for the reversible reactions of 

glucose-fructose, fructose-mannose and glucose-mannose, respectively. The 

equilibrium constants were taken from the literature at a 100ºC,
1,28,29

 being K1 = 1.35, 

K2 = 0.33 and K3 = 0.45. This is a set of 1
st
 order linear differential equations. Since 
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the solution to this set of differential equations results in a 3
rd

 order polynomial 

solution, a numerical method was used. The Euler Method is a first-order Runge-

Kutta numerical method for solving ordinary differential equations with a given initial 

value. The value at each time can be calculated with Equation 2.5: 

       
      

  
                                                  Eq. 2.5 

With an initial value for the six different rate constants and an initial concentration for 

the hexose reactant, concentrations profiles were calculated with the Euler method. 

The increment time chosen was of one second, being the total time of one hour (3600 

seconds). The rate constants were optimized to fit the experimental concentration 

values using the Generalized Reduced Gradient (GRG) Nonlinear approach. In the 

GRG Nonlinear approach the values of the rate constants were changing to optimize a 

specific objective cell, reaching a solution when the absolute value of the relative 

change in the objective function (E) is less than 0.0001 for the last 5 iterations. This 

objective function was defined as the sum of all the squared differences between the 

experimental and theoretical values: 

Objective Fuction (E) = ∑             
  

                                Eq. 2.6 

The whole optimization model is summarized in the following flowchart: 
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Figure 2.16 Flowchart for the optimization of the different rate constants. 

This model was applied using the following initial hexoses: glucose, fructose and 

mannose. The experimental results and the calculated results can be seen in the 

following figures: 
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Figure 2.17 Concentration profiles starting with 1% (wt/wt) glucose in water at 100ºC with a 

100:1 glucose:Sn ratio. 

 

Figure 2.18 Concentration profiles starting with 1% (wt/wt) fructose in water at 100ºC with a 

100:1 fructose:Sn ratio. 



48 

 

 

 

Figure 2.19 Concentration profiles starting with 1% (wt/wt) mannose in water at 100ºC with a 

100:1 mannose:Sn ratio. 

 

 

First order rate constants ((mol Sn)
-1

·s
-1

·m
3
) 

Initial Hexose k1f k2f k3f kgs kfs kms 

Glucose 1.92E-04 1.05E-04 2.79E-05 1.22E-05 1.93E-04 2.17E-07 

Fructose 1.44E-04 1.34E-04 0.00E+00 1.60E-05 8.73E-05 2.17E-05 

Mannose 2.06E-04 1.39E-04 2.12E-05 1.22E-05 1.83E-04 0.00E+00 

Table 2-1 First order rate constants calculated with the Euler model and optimized with the 

GRG Nonlinear approach. 

 The experimental values seemed to match well with the model. When glucose 

and fructose were used as initial hexoses the calculated curve followed the 

experimental values quite nicely, while in the case of mannose the experimental 

values were not as precise. As initial values, all rate constants were given 1·00E-4 

((mol Sn)
-1

·s
-1

·m
3
 to not preference any of the reactions. The initial values of the rate 

constants could have deviated the optimization of the model into a local minimum in 

the case were mannose was used as a starting hexose. Experimental error could have 

also deviated values from the calculated curves. However, in all cases the rate 

constants in Table 2-1 were higher from glucose into fructose and from fructose into 

mannose, than from glucose into mannose. The rate constant for the direct conversion 
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of glucose into mannose was an order of magnitude lower when both glucose and 

mannose were used as a starting hexose and zero in the case of fructose. These values 

suggest mannose was formed via fructose intermediate and not from glucose. The 

sink reaction rate constants were added to the model for better accuracy, but it will be 

discussed later in Chapter Five. 

 The formation of mannose with Sn-Beta in water was probed using 
13

C and 
1
H 

NMR spectroscopies from deuterium as an isotopic tracer in glucose. Following the 

same experiment previously done by former members in the group,
2
 D2-glucose 

(glucose with deuterium in the C-2 position) was used under the same reactions 

conditions as in the previous kinetic study (100ºC, 1% (wt/wt) glucose in water, 100:1 

glucose:Sn, for 45 minutes). The mannose formed (ca 10% yield) was then separated 

by means of High-Performance Liquid Chromatography (HPLC). Figure 2.20 and 

Figure 2.21 show the 
13

C and 
1
H NMR spectra, respectively, of the mannose formed 

after reaction. 

The 
13

C NMR spectrum of the mannose formed after reaction did not show 

resonances at  = 93.9 and 93.5 ppm for the C-1 positions of the  and  pyranose 

forms of mannose (-pyranose and -pyranose are present in a ratio of 67:33), as it 

can be seen in Figure 2.20. This was due to the disruption of the Nuclear Overhauser 

Enhancement (NOE) by the deuterium atom in the C-1 position of mannose, since 

enhanced intensities of 
13

C-
1
H pairs were not observed,

30
 The 

1
H NMR spectra 

confirmed this result (Figure 2.21), because there were no resonances at  = 4.85 and 

5.15 ppm for the H in the C1 position of mannose of the  and  pyranose forms of 

mannose. Since Sn-Beta had formed D1-fructose (fructose with D in the C1 position) 
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by intramolecular hydride shift from glucose, these results would suggest fructose is 

then isomerizing into mannose, since it has the D in the C1 position.  

 

 

Figure 2.20 
13

C NMR spectra of (a) mannose formed after 1% (w/w) D2-glucose with Sn-Beta at 

373K for 45 min., and (b) mannose. 
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Figure 2.21 
1
H NMR spectra of (a) mannose formed after 1% (w/w) D2-glucose with Sn-Beta at 

373K for 45 min., and (b) mannose. 

 If we are to analyze the molecule of fructose in detail, the C1 has two H (name 

Ha and Hb) positioned in the tetrahedral vacancies (Figure 2.22). Analogously to the 

glucose isomerization into fructose by intramolecular hydride shift, these two H in the 

C1 of glucose could attack independently the carbonyl (C2) group in fructose by 

intramolecular hydride shift and form glucose and mannose, respectively. Indeed, 

when fructose was used as a starting hexose, equimolar amounts of glucose and 

mannose were obtained (c.a. 12.5% yield), as it can be seen in Figure 2.18. Therefore, 

all of this data suggest mannose was being made from fructose and not from glucose.  
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Figure 2.22 Plausible fructose conversion into mannose and glucose 

 

3. Conclusion 

The metalloenzyme D-xylose isomerase can catalyze the isomerization of 

glucose to fructose. It is shown that Sn-Beta and Ti-Beta can also catalyze this 

reaction to give similar product distributions to the enzyme and, like the enzyme, Sn-

Beta can convert up to 45 wt% aqueous solutions of glucose
1
. The enzyme reaction 

mechanism involves the cyclic form of glucose binding to the enzyme followed by 

ring opening.
14

 The acyclic form of glucose is then isomerized by a metal-assisted 

intramolecular hydride transfer.
14

 With Sn-Beta (and to a great extent Ti-Beta), it is 

shown that the reaction mechanism is very similar to that of the enzyme. Evidence is 

provided to conclude that the glucose partitions into the zeolite in the cyclic form. In 

the presence of Sn (or Ti), direct NMR evidence of the acyclic fructose is observed. 
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Acyclic glucose must have first been bound to the Lewis acid center prior to being 

isomerized to obtain the acyclic fructose. The isomerization is clearly occurring via a 

Lewis acid-mediated, intramolecular hydride transfer mechanism.
2
 Experimental 

results (kinetic isotope effects) corroborate the conclusion that the rate determining 

step is the intramolecular hydride transfer and that the open site is likely the active 

site responsible for isomerization activity. In addition, fructose seems to isomerize to 

mannose as both kinetic and isotopic experiments provide evidence for the glucose-

fructose-mannose pathway and not the glucose-mannose pathway. 

It is exciting to learn that the hydrophobic, Lewis acid containing zeolite 

catalysts can perform this type of reaction mechanism with glucose and presumably 

other sugars.
6
 The fact that zeolite catalysts are quite stable allows them to be used at 

processing conditions not possible with enzymes, e.g., low pH, high ionic strength, 

high temperature, providing ways of coupling the isomerization reaction to other 

types of reactions important to the production of chemicals and fuels from biomass. 

 

4. Experimental and Additional Figures 

4.1 Synthesis of Ti-Beta, TS-1, Sn-Beta and CH3-Sn-Beta 

 

Ti-Beta zeolite was prepared as follows: 7.503 g of tetraethylammonium 

hydroxide solution (Sigma-Aldrich, 35 wt% in water) was diluted with 15 g of water. 

Then, 7.016 g of tetraethylorthosilicate (Sigma-Aldrich, 98 wt%) and 0.201 g of 

titanium (IV) isopropoxide (Sigma-Aldrich, 97%wt) were added to the solution. The 

mixture was stirred until complete hydrolysis of the tetraethylorthosilicate and 

titanium (IV) isopropoxide was obtained.  Next, the solution was allowed to reach the 
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desired water ratio by complete evaporation of ethanol, isopropanol, and some water. 

Finally, 0.670 g of HF solution (Mallinckrodt, 48 wt% in water) was added resulting 

in a thick gel. The gel composition was SiO2 / 0.021 TiO2 / 0.54 TEAOH / 0.53 HF / 

6.6 H2O.  This gel was transferred to a Teflon-lined stainless steel autoclave and 

heated at 140°C for 14 days. The solid was recovered by filtration, extensively 

washed with water, and dried at 100°C overnight. The solid was calcined at 580ºC for 

6 hours to remove the organic content located within the crystalline material.  

Sn-Beta zeolites was synthesized following the method reported in the patent 

literature.
1
 TS-1 was crystallized from a clear solution prepared by mixing titanium 

butoxide (TNBT, Sigma-Aldrich 97 wt%), tetraethylorthosilicate (TEOS, Sigma-

Aldrich 97 wt%), tetrapropylammonium hydroxide (TPAOH, 1M, Sigma-Aldrich) 

and deionized water. The mixture was stirred until complete hydrolysis of the 

tetraethylorthosilicate and titanium butoxide was obtained, then allowing complete 

evaporation of ethanol, butanol and some water until the desired water ratio was 

reached. The gel composition was SiO2 / 0.03 TiO2 / 0.44 TPAOH / 30 H2O. The TS-

1 reaction mixture was charged into Teflon-lined autoclaves and allowed to crystallize 

at 175ºC for 5 days. The autoclave was rotated at 50 RPM. After cooling, the solid 

was recovered by filtration, extensively washed with water, and dried at 100°C 

overnight. The material was calcined at 580ºC for 6 hours to remove the organic 

content located within the crystalline material. 

Zeolites were prepared as follows: 7.57 g of tetraethylammonium hydroxide 

solution (Sigma-Aldrich, 35% (w/w) in water) was diluted with 15 g of water. Next, 

7.011 g of tetraethylorthosilicate (Sigma-Aldrich, 98% (w/w)) was added, followed 

by the addition of 0.121 g of tin (IV) chloride pentahydrate (Sigma-Aldrich, 98% 

(w/w)), 0.121 
119

tin(IV) chloride pentahydrate (Cambridge Isotopes, 82% enrichment) 
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or 0.122 g of methyltin trichloride pentahydrate (Sigma Aldrich, 97 wt%), depending 

if Sn-Beta, 
119

Sn-Beta, or CH3-Sn-Beta were synthesized, respectively. The mixture 

was stirred until complete hydrolysis of the tetraethylorthosilicate was achieved, and 

then allowed to reach the desired water ratio by complete evaporation of ethanol and 

some water. Finally, 0.690 g of HF solution (Mallinckrodt, 48% (w/w) in water) was 

added, resulting in a thick gel. The gel composition was SiO2 / 0.01 SnCl4 / 0.55 

TEAOH / 0.54 HF / 7.52 H2O.  The gels were transferred to Teflon-lined stainless 

steel autoclaves and heated at 140 
o
C for 25 days. The solids were recovered by 

filtration, extensively washed with water, and dried at 373 K overnight. The solids 

were calcined at 580
o
C for 6 h to remove the organic content located in the crystalline 

material. X-ray diffraction confirmed that the solid materials have the Beta zeolite 

topology (see Figure S2 for the diffraction pattern of CH3-Sn-Beta), and SEM EDS 

measurements for the Sn-Beta, 
119

Sn-Beta and CH3-Sn-Beta samples show a Si:Sn 

atomic ratio of 125:1, 125:1, and 150:1, respectively. 

Si-Beta was prepared by adding 10.01 g of tetraethylammonium fluoride 

dihydrate (Sigma-Aldrich, 97% (w/w) purity) to 10 g of water and 4.947 g of 

tetraethylorthosilicate (Sigma-Aldrich, 98% (w/w)). This mixture was stirred 

overnight at room temperature in a closed vessel to ensure complete hydrolysis of the 

tetraethylorthosilicate. The targeted H2O:SiO2 ratio was reached by complete 

evaporation of the ethanol and partial evaporation of the water. The final molar 

composition of the gel was SiO2 / 0.55 TEAF / 7.25 H2O. The gel was transferred to a 

Teflon-lined stainless steel autoclave and heated at 413 K in a rotation oven (60 rpm) 

for 7 days. The solids were recovered by filtration, washed extensively with water, 

and dried at 373 K overnight. The dried solids were calcined in flowing air (1.67 cm
3
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s
-1

, Air Liquide, breathing grade) at 853 K (0.0167 K s
-1

) for 10 h to remove the 

organic content located in the crystalline material. 

 

4.2 Isomerization Reactions 

Isomerization experiments were carried out in 10 ml thick-walled glass 

reactors (VWR) heated in a temperature-controlled oil bath placed on top of a digital 

stirring hotplate (Fisher Scientific).  The activation energies were obtained with 1.5 g 

of an aqueous solution composed of 10 wt% glucose and the corresponding catalyst 

amount to achieve a 1:100 metal:glucose molar ratio were added to the reactor and 

sealed.  In the study with the mannose formation, 5g of 1% (wt/wt) solution of hexose 

and the corresponding amount of catalyst were added to achieve 1:100 metal:glucose 

molar ratio. The reactor was placed in the oil bath and removed at specific times.  The 

reaction was stopped by cooling the reactor in an ice bath, and small aliquots were 

taken for analysis.  Sample analyses were performed by means of high performance 

liquid chromatography (HPLC) using an Agilent 1200 system (Agilent Technologies 

Corp.) equipped with PDA UV (320 nm) and evaporative light-scattering (ELS) 

detectors.  Glucose and fructose concentrations were monitored with a Biorad Aminex 

HPX87C (300 x 7.8 mm) column (Phenomenex), using ultrapure water (pH = 7) as 

the mobile phase at a flow rate of 0.60 ml/min and a column temperature of 80 
o
C. 

4.3 Glucose Adsorption Experiments 

Sn-BEA or Si-BEA catalyst was mixed with 10 wt% of C13-sugar (glucose or 

fructose) solution at Sn or Si to sugar (glucose or fructose) molar ratio of 1/100 for 

two hours at room temperature. The mixture was then centrifuged to separate the solid 

catalyst from the extra glucose solution. The remaining water was removed by leaving 

the vessel containing the catalyst open overnight in the hood. 
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4.4 Characterization 

Powder X-ray diffraction (XRD) patterns were collected by using a Scintag 

XDS 2000 diffractometer using Cu K radiation.  Scanning electron microscopy 

(SEM) with Energy Dispersive X-ray Spectroscopy (EDS) measurements were 

recorded on a LEO 1550 VP FE SEM at an electron high tension (EHT) of 10 kV.  

UV-Vis measurements were recorded using a Cary 3G spectrophotometer equipped 

with a diffuse reflectance cell.  

Solid-state, magic angle spinning nuclear magnetic resonance (MAS-NMR) 

measurements were performed using a Bruker Avance 500MHz spectrometer 

equipped with a 11.7 T magnet and a Bruker 4mm MAS probe. Samples about 60-80 

mg in powder were packed into 4mm ZrO2 rotors and spun at 14 kHz for MAS 

experiments. MAS-NMR experiments were conducted for 
1
H, 

13
C, 

23
Na, and 

119
Sn 

nuclei of which operating frequencies are 500.2, 125.5, 132.3, 186.5 MHz, 

respectively. 
119

Sn MAS NMR spectra were obtained with a recycle delay time of 2 s. 

119
Sn cross polarization (CP) MAS spectra were acquired at spinning rate of 10 kHz 

and using radio frequency (rf) field strength of 62.6 kHz for contact pulse after 4 

msec-p/2 pulse on the 
1
H channel and strong 

1
H decoupling during the acquisition. 

13
C CPMAS experiments were carried out at similar rf field strength. NMR spectra 

are reported with referenced to tetramethylsilane (TMS) for 
1
H and 

13
C, 1M aqueous 

solution of Na(NO3)3 for 
23

Na, and (CH3)3Sn but measured with SnO2 at - 604.3 ppm 

as a second external reference for 
119

Sn nuclei. 
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For the glucose adsorption experiment analyses, samples (~ 60-80 mg in 

powder form) were packed into 4mm ZrO2 MAS NMR rotors (sample container made 

for a Bruker 4mm MAS NMR probe) at ambient conditions. 

 

4.5 Additional Figures 

 

Figure 2.23 Diffuse reflectance UV-VIS of Sn-beta and Ti-Beta 
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Figure 2.24 Powder X-Ray Diffraction of Sn-Beta and CH3-Sn-Beta. 
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Figure 2.25 N2 adsorption isotherms of Si-Beta and CH3Sn-Beta extracted. 

 

 

 

5. Computational Studies 

*Computational studies were done by Rajeev S. Assary  and Larry A. Curtiss, from 

Argonne National Laboratory 

Quantum chemical studies were performed to gain further molecular-level 

understanding of the glucose-fructose isomerization pathways and to compare with 

experimental kinetics of both Sn-Beta and Ti-Beta. The structures and energies of 

intermediates and transition states were determined. Based on previous experimental 

and theoretical studies, it has been suggested that the open site in Sn-Beta, TS-1, and 

Ti-Beta is the active site for reactions other than the glucose isomerization
24,25,31,32

. 

The enthalpy profile below and the free energy profile for glucose-fructose 

isomerization catalyzed by the Sn-Beta open site indicate that, similarly to enzymatic 

systems, the process can be described as a sequence of ring opening (I to IV), hydride 

shift (V-VI), and ring closing (VI-IX) events. The initial adsorption of cyclic glucose 

and ring opening does not require any apparent reaction barriers. The process 
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requiring significant activation is the intramolecular hydride shift (V to VI) via a 

transition state (V
TS

), and is consistent with experimental results showing a kinetic 

isotope effect when the glucose is labeled with deuterium at the C2 position.  

The enthalpic profiles for glucose-fructose isomerization catalyzed by three 

open active site models with and without adjacent silanol groups were also calculated. 

Based on a single site micro-kinetic model, the activation enthalpy for the glucose-

fructose isomerization process was computed to be 18.6, 22.1 and 17.3 kcal/mol for 

the Sn-Beta open site, the Sn-Beta open site with one silanol group, and Sn-Beta open 

site with two adjacent silanol groups, respectively.  The calculated activation enthalpy 

for the Sn-Beta open site with one adjacent silanol group is found to be consistent 

with our experimental value of 21.2 +/- 0.7 kcal/mol , and supports the assignment of 

the catalytic activity to the open site of Sn-Beta for glucose-fructose isomerization.  

Overall, these calculations show relatively small energetic differences between the 

three open sites models, thus suggesting that the presence or absence of adjacent 

silanol groups does not drastically influence reaction rates. This is in agreement with 

our experimental results showing that catalysts with Na
+
 exchanged silanol groups 

had similar activity as the non-exchanged catalysts. 

 It was previously shown that the apparent activation energy for the hydride 

shift associated with the isomerization of glyceraldehyde to dihydroxyacetone is 10 

kcal/mol higher for the Sn-Beta closed site than that of an open site
32

. The glucose 

isomerization over the closed site would require the participation of a water molecule 

to allow for ring opening of the glucose. Calculations on a closed site with the 

presence of an explicit water molecule were performed and the computed apparent 

activation barrier was approximately 30 kcal/mol and is therefore unlikely to be the 

primary reaction pathway for glucose isomerization over Sn-Beta. These results 



62 

 

 

support the suggestion that the open site is a catalytically more active site for the 

glucose-fructose isomerization.  

 The glucose-fructose isomerization using models of the open sites of Ti-Beta 

was also investigated. The initial glucose absorption on the open Ti-Beta model site 

(with one silanol group) is much weaker, and the rate limiting hydride shift is 10 

kcal/mol higher in barrier height compared to that catalyzed by the open site of Sn-

Beta with one adjacent silanol group. This trend is consistent with previously reported 

theoretical studies for aldose-ketose isomerization by Sn-Beta and Ti-Beta active site 

models
32

. The computed activation enthalpy for glucose-fructose isomerization 

catalyzed by the open site of Ti-Beta, open site of Ti-Beta with one adjacent silanol, 

and the open site of Ti-Beta with two adjacent silanol groups are 28.0, 34.3, and 36.3 

kcal/mol, respectively. The computed activation enthalpies of Ti-Beta with silanol 

group(s) are consistent with the experimentally measured activation enthalpy (37.1 +/- 

1.0 kcal/mol).  

 Computational results indicate that the acyclic forms of glucose and fructose 

are equally stabilized by Sn centers (Species V and VI). Gas phase calculations at the 

G4 level suggest that acyclic fructose is more stable than acyclic glucose by ~ 2 

kcal/mol (ketone groups has more intramolecular hydrogen bonding than the 

aldehyde). Thus, at thermodynamic equilibrium, cyclic and acyclic species of both 

sugars (Figure 2.26, species I, II, V, VI, VIII, and IX) are expected to be present 

within the zeolite pores. The enthalpy surfaces support the concept of having acyclic 

forms strongly coordinated with the Sn active site, which is consistent with the 

experimental observation of acyclic fructose species by NMR. Note that although the 

cyclic furanose form of fructose bound to the Sn center has a lower energy (-19 

kcal/mol; species VIII) than the bound acyclic form (-9 kcal/mol; Figure 2.26, species 
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VI), it is still possible to observe the bound acyclic form since a barrier of ~ 10 kcal is 

required for the cyclization. A similar conclusion can be drawn for glucose. 

 

Figure 2.26 The Computed enthalpy profile (MP2, 298 K in water dielectric) for glucose-fructose 

isomerization catalyzed by open site of Sn-Beta. The label A denotes the sum of enthalpy of 

glucose and active site model (Scheme S2, (a)) infinitely separated in aqueous medium, B denotes 

the same quantity for fructose. All energies are relative to the energy of A and reported in 

kcal/mol. 
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Chapter 3 : The Glucose Isomerization into Fructose Mechanism with         

SnO2/Si-Beta 

1. Introduction 

In aqueous media, it has previously been seen that framework Sn centers 

behave as Lewis acids that bind glucose reactants in their acyclic forms and mediate 

their isomerization to fructose via an intramolecular hydride shift from the C-2 to the 

C-1 position.
1,2

 Glucose reactants containing a deuterium label on the C-2 position 

(glucose-D2) formed fructose products deuterated in the C-1 position (fructose-D1),
1,2

 

reflected in 
13

C
 
NMR spectra that showed low-intensity triplet resonances 

corresponding to these carbon atoms. Low-intensity resonances in 
13

C
 
NMR spectra, 

acquired using 
1
H broad-band decoupling, reflect the presence of D atoms that disrupt 

the Nuclear Overhauser Enhancement (NOE) of 
13

C resonances via suppression of 

13
C-

1
H couplings. The mechanistic evidence obtained from 

13
C and 

1
H NMR studies 

were also consistent with the observed kinetic isotope effect of ca. 2 (at 383 K) when 

using glucose-D2 reactants.
2
 Activation energies measured experimentally (89 kJ mol

-

1
) and calculated by MP2-levels of theory for intramolecular hydride shift steps on 

framework Sn open sites (Sn with three -O(Si) bonds and one -OH group) adjacent to 

one silanol group (92 kJ mol
-1

) were also similar.
2
 These Lewis acid-mediated 

isomerization pathways on Sn-Beta in aqueous solvent are analogous to those on 

metalloenzymes such as D-xylose isomerase XI, which contains two divalent metal 

ions (commonly Mg
2+

 or Mn
2+

) that facilitate the ring-opening of glucose and the 

hydride shift from C-2 to C-1 positions on the acyclic sugar.
3
  

In contrast with the case of glucose isomerization to fructose on framework Sn 

sites in water, the activity and mechanistic origins of other Sn species in the zeolite 

remain unclear. In this chapter kinetic and mechanistic studies are used, focusing on 
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differential glucose conversions to distinguish among isomerization pathways on 

framework and extraframework Sn sites in zeolite Beta, in both water and methanol. 

In contrast to framework Sn sites behaving as Lewis acids that isomerize glucose to 

fructose in water via intramolecular hydride shifts, extraframework SnO2 domains 

located within hydrophobic zeolite Beta channels mediate glucose isomerization to 

fructose via base-catalyzed proton abstraction in both water and methanol. 

Extraframework SnO2 particles located on external zeolite surfaces or on amorphous 

supports, however, isomerize glucose into fructose in methanol, but not in water. 

These findings help clarify differences in reactivity among Sn sites of different 

structure and among extraframework SnO2 particles of different location within 

porous solids. They also provide the mechanistic origin of fructose when formed as a 

primary product of glucose conversion with Sn-zeolites 

 

2. Results and Discussion. 

2.1 Site and Structural Characterization of Sn-Containing Samples 

The x-ray diffractograms of Si-Beta, Sn-Beta, SnO2/Si-Beta and SnO2/Si-

Beta-E (Figure 3.1) show patterns that were consistent with the zeolite Beta structure, 

while the XRD pattern of SnO2/SiO2 is consistent with that of an amorphous solid. 

The XRD pattern of SnO2/Si-Beta also exhibit diffraction lines at 2 values of 26.7
o
 

and 34.0
o
 that are characteristic of bulk SnO2 (Figure 3.1). The presence of some 

extracrystalline SnO2 aggregates in the SnO2/Si-Beta sample (synthesized using SnO2 

as the Sn source) indicate that bulk SnO2 did not completely dissolve or decompose 

under the hydrothermal conditions used in the synthesis of SnO2/Si-Beta. The absence 

of large SnO2 domains (as detectable by XRD) in Sn-Beta and SnO2/Si-Beta-E 
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indicate that mononuclear SnCl4 precursors did not aggregate significantly during 

hydrothermal synthesis of Sn-Beta, or during the aqueous-phase exchange and 

subsequent air treatment (853 K) protocols used to synthesize SnO2/Si-Beta-E. 

Indeed, SEM images of the SnO2/Si-Beta sample, but not of Sn-Beta, show the 

presence of large (> 10 m) SnO2 particles (Figure 3.2). 

 

Figure 3.1 Powder x-ray diffraction patterns of Si-Beta, Sn-Beta, SnO2/Si-Beta-E, SnO2/Si-Beta, 

SnO2, SnO2/SiO2 (bottom to top). 
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Figure 3.2 SEM images of (a, b) Sn-Beta and (c, d) SnO2/Si-Beta. 

Total micropore volumes determined by N2 adsorption isotherms (Figure 3.12, 

Figure 3.13, Figure 3.14 and Figure 3.15) are 0.20 and 0.19 cm
3
 g

-1
 for Sn-Beta and 

Si-Beta, respectively (Table 3-1). The micropore volume for SnO2/Si-Beta-E, a 

sample in which SnO2 was deliberately deposited on the exterior surfaces of Beta 

crystallites, is also 0.20 cm
3
 g

-1
, consistent with its low Sn content (2.1 wt%) and the 

absence of any intracrystalline SnO2 species that may occlude pore volume. In 

contrast, the micropore volume is 0.12 cm
3
 g

-1
 for SnO2/Si-Beta (Table 3-1), which is 

significantly lower than expected if SnO2 were present as extracrystalline phases or 

located within intracrystralline voids but only occluding space (page 90). These data 

suggested that some SnO2 domains are located within the pores of SnO2/Si-Beta, 

preventing access to a fraction of the internal void space in SnO2/Si-Beta crystals. 
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Catalyst Si/Sn
a 

N2 micropore volume
b 

(cm
3
 g

-1
) 

119
Sn MAS NMR resonances

c 

 (ppm) 
UV-Visible 

band centers
d
 

(nm) 

 
 

 hydrated dehydrated  

Sn-Beta 87 0.20 -688, -700 -424, -443 203 

SnO2/Si-Beta 92 0.12 -604 - 280 

SnO2/Si-Beta-E 116 0.20 -606 -602 238 

SnO2/SiO2 13 - -605 - 247 

SnO2 - - -604 - 276 

Si-Beta - 0.19 - - n.d.* 

a
Determined by electron microprobe. 

b
Determined by extrapolation of mesopore N2 uptakes to zero pressure (Section S.3, Supporting 

Information). 
c
Relative to (CH3)4Sn. 

d
Diffuse reflectance spectra obtained on materials exposed to ambient conditions. 

*n.d. not detected 

 

Table 3-1 Site and structural characterization of samples used in this study. 

 

119
Sn NMR spectra of Sn-Beta after calcination and exposure to ambient 

conditions (hydrated) show main resonances at -688 and -700 ppm (Figure 3.3a). 

After dehydration, these resonances disappeared and new resonances appeared 

concomitantly at -424 and -443 ppm (Figure 3.3b), which have been respectively 

assigned to framework Sn open sites (three framework –O(Si) bonds and one (OH) 

group) and framework Sn close sites (four framework –O(Si) bonds).
2
 The 

119
Sn 

NMR spectrum of hydrated SnO2/SiO2 (Figure 3.3c) and SnO2/Si-Beta-E (Figure 

3.3d) samples exhibit very broad resonances centered near -604 ppm, which do not 

change upon dehydration (dehydrated SnO2/Si-Beta-E; Figure 3.3e). The position of 

these resonances is consistent with the chemical shift of octahedrally-coordinated Sn 

in bulk SnO2 (-604.3 ppm; Figure 3.3g), while their breadth reflect geometric 

heterogeneities among the octahedral Sn centers in these samples, as expected from 

the formation of small SnO2 domains from mononuclear SnCl4 precursors. In contrast 

to SnO2/Si-Beta-E and SnO2/SiO2, the 
119

Sn NMR spectrum of hydrated SnO2/Si-Beta 

(Figure 3.3f) shows a very sharp resonance at -604 ppm. This sharp resonance reflects 
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the presence of large SnO2 aggregates on SnO2/Si-Beta, concordant with the 

diffraction lines for bulk SnO2 that appeared in its XRD pattern (Figure 3.1) and the 

large SnO2 particles (> 10 m) detected in its SEM images (Figure 3.2).  

 

 

Figure 3.3 119
Sn MAS NMR spectra of (a) Sn-Beta (hydrated), (b) Sn-Beta (dehydrated), (c) 

SnO2/SiO2 (hydrated), (d) SnO2/Si-Beta-E (hydrated), (e) SnO2/Si-Beta-E (dehydrated), (f) 

SnO2/Si-Beta (hydrated), and (g) bulk SnO2 (hydrated). 

 

The DRUV spectrum of Sn-Beta (Figure 3.4a) shows a peak centered at 203 

nm (Table 3-1) that has been assigned to tetrahedrally coordinated framework Sn,
4,5
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while no features are observed in the spectrum of Si-Beta (Figure 3.16). The DRUV 

spectra of SnO2/SiO2 (Figure 3.4b) and SnO2/Si-Beta-E (Figure 3.4c) exhibit peaks 

centered at 247 and 238 nm (Table 3-1), respectively, which have been assigned to 

SnO2 species.
6–9

 In contrast to SnO2/SiO2 and SnO2/Si-Beta-E, the DRUV spectra of 

bulk SnO2 (Figure 3.4) and SnO2/Si-Beta (Figure 3.4e) show broad bands ranging 

from 235-290 nm with maxima near 280 nm (Table 3-1), which have been assigned to 

hexacoordinated polymeric Sn species.
5
 Relations between UV-Visible absorption 

wavelengths and the domain sizes of SnO2 nanoparticles have been well-

documented;
6–9

 quantum confinement effects cause an increase in the band gap 

energies (and concomitant decreases in UV-Visible absorption wavelengths) of 

nanoscale semiconducting oxide domains as they decrease in size. Thus, the lower 

UV-Visible band centers of SnO2/SiO2 and SnO2/Si-Beta-E, relative to bulk SnO2 and 

SnO2/Si-Beta-E, indicate the presence of smaller SnO2 domains on the former 

samples.  

Taken together, these characterization data indicated that Sn species are 

present as framework Sn sites in Sn-Beta, as extraframework SnO2 particles supported 

on extracrystalline surfaces of SnO2/Si-Beta-E or on amorphous surfaces of 

SnO2/SiO2, and as extraframework SnO2 particles located both outside and within 

microporous voids of SnO2/Si-Beta. 
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Figure 3.4 Diffuse reflectance UV-Visible spectra of (a) Sn-Beta, (b) SnO2/SiO2, (c) SnO2/Si-Beta-

E, (d) SnO2/Si-Beta and (e) bulk SnO2; spectra shifted vertically for clarity. 

2.2 Glucose Conversion on Sn-Beta and SnO2-Containing Samples in Water 

Fructose was formed as the primary product during differential conversion of 

glucose on both Sn-Beta and SnO2/Si-Beta in water. Turnover rates (per mol total Sn) 

were higher on Sn-Beta than on SnO2/Si-Beta throughout the temperature range 

studied (343-373 K; see Table 3-4). The apparent activation energy was also higher 

on Sn-Beta (93   15 kJ mol
-1

;Table 3-2) than on SnO2/Si-Beta (59   6 kJ mol
-1

;Table 

3-2). Although both Sn-Beta and SnO2/Si-Beta are able to isomerize glucose to 

fructose in water, the different structures of framework and extraframework Sn active 

200 240 280 320 360
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sites and the large difference in apparent activation energies between them suggest 

that different isomerization mechanisms prevail on these two sites. 

 

Catalyst Solvent     Turnover rate (373 K) 

     (/ 10
-3

 mol s
-1

 (mol total Sn)
-1

) 
      Eapp 

       (kJ mol
-1

) 

Sn-Beta H2O 27.8   5.0 93   15 

SnO2/Si-Beta H2O 9.7   1.9 59   6 

 

CH3OH 16.6   2.3 71   15 

SnO2/SiO2 H2O n.d.
*
 - 

 

CH3OH 4.2   0.3 102   9 

*n.d. not detected 

Table 3-2 Turnover rates (373 K) and apparent activation energies (Eapp) for glucose 

isomerization to fructose and glucose epimerization to mannose on Sn-Beta, SnO2/Si-Beta and 

SnO2/SiO2 in H2O and CH3OH solvents. 

 

 
1
H and 

13
C NMR spectroscopies of products formed from the reaction of a 10 

% (w/w) solution of glucose-D2 over SnO2/Si-Beta in water (1 h, 373 K) were used to 

investigate the isomerization mechanism on SnO2 active sites, as was previously done 

with Sn-Beta in water.
10

 The 
13

C NMR spectrum of glucose after reaction (Figure 

3.5a) shows resonances at  = 74.1 and 71.3 ppm for the C-2 positions of -pyranose 

and -pyranose; their low intensity triplets are also present, reflecting the presence of 

D atoms, which disrupted the Nuclear Overhauser Enhancement (NOE) of 
13

C 

resonances. Thus, the resonance at  = 74.1 ppm reflects the presence of H atoms at 

some of the glucose C-2 positions, consistent with the low intensity resonances that 

appear ca.  = 3.1 ppm for H atoms at the C-2 position in the corresponding 
1
H NMR 

spectrum (Figure 3.17). These data indicate that the D-label on glucose-D2 underwent 

isotopic scrambling in the presence of SnO2/Si-Beta in water, as we have previously 

observed after reaction of glucose-D2 with aqueous NaOH solutions, but not with Sn-

Beta in water.
10
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Figure 3.5 
13

C NMR spectra of sugar fractions (glucose or fructose) obtained after reaction of 

glucose-D2 with SnO2/Si-Beta in different solvents (water or methanol) at 373 K for 1 h. (a) 

glucose / water, (b) glucose / methanol, (c) fructose / water, (d) fructose / methanol. 

 

The 
13

C NMR spectrum of fructose products formed from reaction of glucose-

D2 with SnO2/Si-Beta in water (Figure 3.5c) showed resonances at  = 63.8 and 62.6 

ppm for the C-1 position of -pyranose and -furanose, respectively. The absence of 
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low intensity triplets for these resonances indicated that no deuterium atoms were 

bonded to fructose C-1 carbon atoms.
10

 The corresponding 
1
H NMR spectrum (Figure 

3.19) shows a resonance at  = 3.45 ppm for H-atoms bonded to fructose C-1 carbons, 

confirming the absence of deuterium at C-1 carbon atoms. In previous work done by 

former colleagues,
10

 similar NMR results were reported for NaOH-catalyzed glucose-

D2 isomerizations.  

The fructose formed from the glucose isomerization with SnO2/Si-Beta could 

had been synthesized without any deuterium or with deuterium in the C1 position and 

then be exchanged with the protons of the aqueous solvent. Glucose isomerization 

rates were compared, starting from unlabeled glucose and glucose-D2, showing no 

kinetic isotope effect (kH/kD = 1.03, Figure 3.6). In contrast, Sn-Beta does have a 

considerable kinetic isotope effect, kH/kD = 1.98, confirming the intramolecular 

hydride shift.
1
 Thus, the current data show that glucose isomerizes on SnO2 via a 

proton abstraction mechanism analogous to the homogeneous base catalyst, in which 

fructose was formed via enolate intermediates generated from the base-catalyzed 

proton abstraction at the -carbonyl carbon (C-2) position of glucose. 

 

 

Figure 3.6 Glucose isomerization rate comparison between unlabeled glucose and glucose-D2 1% 

(wt/wt) in water at 373K. 



78 

 

 

 

Glucose isomerization via reversible enolization proceeds in aqueous alkaline 

media with activation energies that are nearly twice as large (~ 120 kJ mol
-1

)
11,12

 as 

observed on SnO2/Si-Beta in water (59   6;Table 3-2). Lower apparent activation 

energies than expected (by factors of ~ 2) on SnO2/Si-Beta could be consistent with 

internal mass transfer limitations of the reaction rate.
13

 Glucose isomerization rates 

and activation energies measured on SnO2/SiO2 and SnO2/Si-Beta-E, for which 

diffusion to SnO2 surfaces are not expected to limit rates, were used to assess whether 

reactions may be transport-limited on SnO2/Si-Beta. The conversion of 1 wt% glucose 

in water mixtures remained below detection limits on SnO2/SiO2, SnO2/Si-Beta-E and 

bulk SnO2 (1:50 Sn:glucose molar ratio) after 15 min at 353 K (Table 3-3). These data 

indicate that bulk water inhibits base-catalyzed glucose isomerization on SnO2 

surfaces. Thus, it is suggested that only SnO2 domains located within hydrophobic 

zeolite Beta pores, which are protected from contact with bulk liquid water and also 

present in the SnO2/Si-Beta sample, can catalyze glucose isomerization in aqueous 

solvent. 

 

.   

Catalyst Glucose Conversion (%) 

 H2O CH3OH 

SnO2/Si-Beta 3.0 5.0 

SnO2/Si-Beta-E n.d.
*
 3.6 

SnO2/SiO2 n.d.
*
 0.9 

SnO2 n.d.
*
 n.d.

*
 

*n.d. not detected 

Table 3-3 Glucose conversion to fructose via base-catalyzed isomerization on SnO2-containing 

samples in H2O and CH3OH solvents. Reaction conditions: 1% (w/w) glucose solutions, 1:50 

metal:glucose ratio, 353 K, 15 min. 
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2.3 Glucose Conversion on SnO2-Containing Samples in Methanol 

The differential conversion of 1% (w/w) glucose in methanol over SnO2/Si-

Beta formed fructose as the primary product. Turnover rates (per total Sn) were higher 

(by factors of up to 3; 333-383 K) on SnO2/Si-Beta in methanol than in aqueous 

solvent (Table 3-4). Glucose also isomerized to fructose on both SnO2/SiO2 and 

SnO2/Si-Beta-E when methanol was used as the solvent (Table 3-3), in sharp contrast 

to the undetectable conversion of glucose on these samples in water under equivalent 

reaction conditions. These data suggest that contact with bulk methanol does not 

inhibit isomerization reactivity on SnO2 surfaces and, in turn, that the higher turnover 

rates on SnO2/Si-Beta in methanol than in water (Table 3-4) reflect, to an extent, 

additional contributions from glucose conversion on extracrystalline SnO2 particles. 

 

.   

Catalyst Solvent Turnover rate 

 (/ 10
-3

 mol s
-1

 (mol Sn)
-1

) 

  333 K 343 K 353 K 363 K 373 K 383 K 

Sn-Beta H2O - 2.5   1.9 3.8   1.2 16.4   6.1 27.8   5.0 - 

SnO2/Si-Beta H2O 1.3   0.2 2.0   0.3 3.5   0.3 4.8   0.7 9.7   1.9 20.7   2.7 

 

CH3OH 1.8   0.2 3.6   0.9 9.2   2.1 14.1   3.2 16.6   2.3 19.2   2.9 

SnO2/SiO2 H2O n.d.
*
 n.d.

*
 n.d.

*
 n.d.

*
 n.d.

*
 n.d.

*
 

 

CH3OH - 

0.2   

0.04 0.7   0.1 2.0   0.3 4.2   0.3 - 

*n.d. not detected 

Table 3-4 Turnover rates for glucose conversion on Sn-Beta, SnO2/Si-Beta and SnO2/SiO2 in H2O 

and CH3OH solvents.   

 

In contrast to turnover rates measured over SnO2/Si-Beta in water, turnover 

rates over SnO2/Si-Beta in methanol depended differently on temperature in the 333-

363 K and 363-383 K ranges (Figure 3.7). This behavior might have reflected 

temperature-dependent contributions to measured isomerization rates from SnO2 

particles of different size and location (i.e., extracrystalline or intracrystalline). The 

apparent activation energy estimated from initial rate data in methanol between 333-
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363 K is 71   15 kJ mol
-1

, which is similar to that determined in water between 343-

373 K (59   6 kJ mol
-1

;Table 3-2). The activation energy for glucose isomerization to 

fructose on SnO2/SiO2 in methanol was 102   9 kJ mol
-1

 (Figure 3.8), which was 

similar to the values of ~ 120 kJ mol
-1

 reported for base-catalyzed glucose 

isomerization in aqueous alkaline media.
11,12

 The lower activation energies on 

SnO2/Si-Beta in water and in methanol, compared to SnO2/SiO2 in methanol, 

suggested that isomerization rates may, in part, be limited by internal mass transfer 

restrictions on SnO2/Si-Beta,
13

 as might be expected from the significant decrease in 

micropore volume accessible to N2 (~ 40%;Table 3-2).  

 

Figure 3.7 Temperature dependence of turnover rates on SnO2/Si-Beta for glucose isomerization 

to fructose in water (triangles) and methanol (circles). 
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Figure 3.8 Temperature dependence of turnover rates for glucose isomerization to fructose in 

methanol on SnO2/Si-Beta (circles) and SnO2-SiO2 (triangles). 

 

 The mechanism of glucose isomerization on SnO2/Si-Beta in methanol was 

probed using 
13

C and 
1
H NMR spectroscopies of the products formed from the 

reaction of glucose-D2 reactants, as in the case of SnO2/Si-Beta in water. Both 
13

C 

(Figure 3.5b) and 
1
H NMR (Figure 3.20) spectra of the glucose after reaction in 

methanol provided evidence for H/D scrambling at the C-2 position. Fructose 

products did not retain the deuterium label on their C-1 positions, as reflected in 

resonances present at  = 63.8 and 62.6 ppm in their 
13

C NMR spectrum (Figure 3.5d) 

and at  = 3.45 ppm in their 
1
H NMR spectrum (Figure 3.21). These spectral features, 

which reflect the presence or absence of D-atoms at specific carbon atoms in glucose 

and fructose products, are similar when glucose is reacted with SnO2/Si-Beta in 
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methanol and in water. As in water, the glucose isomerization into fructose with 

SnO2/Si-Beta did not have a kinetic isotope effect (kH/kD = 1.07, Figure 3.9), 

confirming the loss of the deuterium in the C-2 position of glucose and the enolate 

intermediate prior to the formation of fructose. 

 

Figure 3.9 Glucose isomerization rate comparison between unlabeled glucose and glucose-D2 

1%(wt/wt) in methanol at 373K. 

It is observed from these isotopic labeling studies that SnO2 particles can 

isomerize glucose to fructose via the base-catalyzed proton abstraction mechanism. 

Glucose isomerization to fructose on TiO2 and ZrO2 particles has been attributed 

previously to a base-catalyzed mechanism, but solely based on differences in fructose 

yields and the numbers of basic sites on these catalysts (determined by CO2 

temperature-programmed desorption).
14

 Glucose isomerization in methanol occurs 

irrespective of SnO2 location within or outside of pore structures, but in water 

apparently requires that SnO2 domains to be confined within hydrophobic 

microporous channels in order to prevent their contact with bulk liquid water. 

Although turnover rates (per total Sn) were larger by factors of ~ 3 (333-383 K) on 

SnO2/Si-Beta in methanol than aqueous solvent, the order-of-magnitude higher 

solubility of glucose in water (~ 50 wt%) than in methanol (~ 1-2 wt%) implies that 
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significantly higher yields and productivities can be achieved for glucose 

isomerization in aqueous media. 

2.4 Glucose Conversion on Sn-Beta in Methanol. 

The reactivity of glucose on Sn-Beta in methanol led to high glucose 

conversions with unknown additional side products. Glucose conversion was of 

35.3% after 10 min at 373K (Table 3-5), with a carbon balance of 81.1%. Even at 

lower temperatures, 353K, and higher tin to glucose ratio, 1:100, the carbon balance 

was of 92.8% after 10 minutes at 12.0% glucose conversion. These results made it 

difficult to obtain glucose turnover rates to fructose, since other side products are 

being formed and it is unclear how these are formed. However, deuterium in the C-1 

position of fructose was observed by 
13

C NMR. The absence of the resonances at  = 

63.8 and 62.6 ppm for -pyranose and -furanose reflect that in Sn-Beta glucose does 

also isomerize into fructose by an intramolecular hydride shift. The other products are 

discussed in Chapter 5. 

    15 minutes 30 minutes 45 minutes 

Catalyst Solvent XG(%) YF(%) YM(%) XG(%) YF(%) YM(%) XG(%) YF(%) YM(%) 

Sn-Beta CH3OH 35.3 11.8 4.6 49.3 11.6 6.3 58.0 11.6 5.5 

Table 3-5 Glucose conversion and fructose and mannose yields in CH3OH solvents. Reaction 

conditions: 1% (w/w) glucose solutions, 1:50 metal:glucose ratio and 373 K. 

 

   10 minutes 20 minutes 30 minutes 

Catalyst Solvent XG(%) YF(%) YM(%) XG(%) YF(%) YM(%) XG(%) YF(%) YM(%) 

Sn-Beta CH3OH 12.0 4.8 0.0 20.4 9.1 1.8 23.2 10.3 3.9 

Table 3-6 Glucose conversion and fructose and mannose yields in CH3OH solvents. Reaction 

conditions: 1% (w/w) glucose solutions, 1:100 metal:glucose ratio and 353 K. 
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Figure 3.10 
13

C NMR Spectra of (a) fructose, (b) product mixture from glucose-D2 with Sn-Beta, 

after 15 minutes at 100ºC at a glucose:Sn ratio of 100:1.  

3. Conclusion 

Glucose initially undergoes isomerization to fructose on both framework Sn 

sites and extraframework SnO2 sites (Figure 3.11). Framework Sn centers within the 

hydrophobic pores of zeolite Beta (Sn-Beta) behave as Lewis acid sites that catalyze 

isomerization via intramolecular hydride shifts between C-1 and C-2 carbon atoms on 

acyclic glucose. In contrast, basic sites on extraframework SnO2 domains catalyze 

glucose isomerization via the abstraction of protons at C-2 carbon atoms to form 

enolate intermediates (Figure 3.11). Extraframework Sn species appear to be reactive 

only when confined in hydrophobic zeolite Beta channels (SnO2/Si-Beta) and not 

when in contact with bulk water at external zeolite crystal surfaces (SnO2/Si-Beta-E) 
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and on amorphous supports (SnO2/SiO2). In methanol SnO2 domains are able to 

catalyze glucose isomerization irrespective of their location, within or outside of 

hydrophobic zeolite Beta pores, indicating that methanol does not inhibit the base-

catalyzed isomerization on SnO2. These findings demonstrate clearly that the sole 

observation of glucose-to-fructose isomerization on Sn-zeolite samples, in the absence 

of any isotopic labeling studies or unambiguous Sn site characterization, does not 

provide sufficient evidence for the incorporation of Sn atoms into zeolite frameworks. 

  

 

 

Figure 3.11 Reaction network of glucose with Sn-Beta and SnO2/Si-Beta in water and methanol 

solvents.  
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4. Experimental Procedure and Additional Figures 

4.1 Synthesis of Si-Beta, Sn-Beta, SnO2/Si-Beta and SnO2-SiO2 

Si-Beta was prepared by adding 10.01 g of tetraethylammonium fluoride 

dihydrate (Sigma-Aldrich, 97% (w/w) purity) to 10 g of water and 4.947 g of 

tetraethylorthosilicate (Sigma-Aldrich, 98% (w/w)). This mixture was stirred 

overnight at room temperature in a closed vessel to ensure complete hydrolysis of the 

tetraethylorthosilicate. The targeted H2O:SiO2 ratio was reached by complete 

evaporation of the ethanol and partial evaporation of the water. The final molar 

composition of the gel was SiO2 / 0.55 TEAF / 7.25 H2O. The gel was transferred to a 

Teflon-lined stainless steel autoclave and heated at 413 K in a rotation oven (60 rpm) 

for 7 days. The solids were recovered by filtration, washed extensively with water, 

and dried at 373 K overnight. The dried solids were calcined in flowing air (1.67 cm
3
 

s
-1

, Air Liquide, breathing grade) at 853 K (0.0167 K s
-1

) for 10 h to remove the 

organic content located in the crystalline material.  

Sn-Beta was synthesized according to previously reported procedures.
8
 7.57 g 

of tetraethylammonium hydroxide solution (Sigma-Aldrich, 35% (w/w) in water) 

were added to 7.011 g of tetraethylorthosilicate (Sigma-Aldrich, 98% (w/w)), 

followed by the addition of 0.121 g of tin (IV) chloride pentahydrate (Sigma-Aldrich, 

98% (w/w)). The mixture was stirred until tetraethylorthosilicate was completely 

hydrolyzed and then allowed to reach the targeted H2O:SiO2 ratio by complete 

evaporation of ethanol and partial evaporation of water. Finally, 0.690 g of HF 

solution (Mallinckrodt, 52% (w/w) in water) was added, resulting in the formation of 

a thick gel. The final molar composition of the gel was 1 SiO2 / 0.01 SnCl4 / 0.55 

TEAOH / 0.54 HF / 7.52 H2O. Si-Beta was added as seed material (5 wt% of SiO2 in 

gel) to this gel and then mixed with it. The final gel was transferred to a Teflon-lined 
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stainless steel autoclave and heated at 413 K in a static oven for 40 days. The solids 

were recovered, washed, dried and calcined using the procedure described above for 

Si-Beta.  

Si-Beta containing extraframework SnO2 (SnO2/Si-Beta) was prepared using 

the same procedure as Sn-Beta, but substituting tin (IV) chloride pentahydrate with 

0.052 g of tin (IV) dioxide (Sigma-Aldrich, -325 mesh; aggregate particle size < 44 

m) as the source of tin in the synthesis gel. The gel was transferred to a Teflon-lined 

stainless steel autoclave and heated at 413 K in a static oven for 25 days. The 

recovered solids were washed, dried and calcined using the same procedure as for Si-

Beta and Sn-Beta.  

Si-Beta containing extraframework SnO2 particles located on external 

crystallite surfaces (SnO2/Si-Beta-E) was synthesized by first adding 0.059 g of tin 

(IV) chloride pentahydrate (Sigma-Aldrich, 98% (w/w)) to 10 g of water. This 

solution was stirred with 1.0 g of Si-Beta in its as-made form for 16 h at ambient 

temperature. The solids were recovered by centrifugation and dried at 373 K 

overnight. Finally, the dried solids were calcined in flowing air (1.67 cm
3
 s

-1
, Air 

Liquide, breathing grade) at 853 K (0.0167 K s
-1

) for 10 h.  

SnO2 was dispersed on silica (SnO2/SiO2) by first adding 0.5 g of tin (IV) 

chloride pentahydrate (Sigma-Aldrich, 98% (w/w)) to 30 g of water. 2 g of fumed 

silica (Sigma-Aldrich, 0.2-0.3 mm average particle size) were added to the mixture 

and stirred for 24 hours at room temperature. The solids were recovered, washed, 

dried and calcined using the same procedure as for crystalline zeolites. 

4.2 Characterization Methods 

Atomic Si and Sn contents were determined using a JEOL 8200 electron 

microprobe operated at 15 kV and 25 nA in a focused beam mode with a 40 m spot 
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size. Scanning electron microscopy (SEM) images were recorded on a LEO 1550 VP 

field emission SEM at an electron high tension of 10 kV on zeolite samples after 

sputtering with carbon to minimize the effects of charging. The crystalline structures 

of zeolite samples were determined from powder X-ray diffraction (XRD) patterns 

collected using a Rigaku Miniflex II diffractometer and Cu K radiation. Diffuse 

reflectance UV-Visible (DRUV) spectra were recorded using a Cary 3G 

spectrophotometer equipped with a diffuse reflectance cell; zeolite samples were 

calcined in air at 853 K for 10 hours and exposed to ambient conditions prior to 

acquiring spectra. 

N2 adsorption isotherms at 77 K were obtained using a Quantachrome 

Autosorb iQ automated gas sorption analyzer. Zeolite samples (typically 0.03-0.04 g) 

were pelleted and sieved to retain 150-600 m particles. Samples were degassed at 

353 K (0.167 K s
-1

) for 1 h, 393 K (0.167 K s
-1

) for 3 h and 623 K (0.167 K s
-1

) for 8 h 

prior to recording dry sample weight. N2 uptake was recorded between relative 

pressures of 10
-7

 and 1 at 77 K. Total micropore volumes were estimated from linear 

extrapolation of mesopore N2 uptakes to zero pressure and the density of liquid 

nitrogen. 

Solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) 

spectra were recorded using a Bruker Avance 500 MHz spectrometer equipped with a 

11.7 T magnet and a Bruker 4mm MAS probe. Powdered samples (0.06-0.08 g) were 

packed into 4 mm ZrO2 rotors with Kel-F caps and spun at 14 kHz. 
119

Sn NMR 

spectra were recorded at an operating frequency of 186.5 MHz and are referenced to 

(CH3)4Sn. Unless otherwise specified, spectra were acquired on hydrated samples, 

which were exposed to ambient conditions after calcination in flowing air at 853 K 

but prior to packing NMR rotors. Samples were dehydrated by heating the packed 
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NMR rotors to 423 K in vacuum and holding overnight prior to acquiring NMR 

spectra. 

Liquid 
1
H and 

13
C NMR spectra were recorded using a Varian INOVA 500 

MHz spectrometer equipped with an auto-x pfg broad band probe. Proton and carbon 

chemical shifts are reported relative to the residual solvent signal. 
1
H NMR spectra 

were acquired with 256 scans while 
13

C NMR spectra were acquired with 1000 scans. 

 

4.3 Reaction Procedures 

Reactions with D-glucose (Sigma-Aldrich,  99%) were conducted in 10 ml 

thick-walled glass reactors (VWR) that were heated in a temperature-controlled oil 

bath placed on top of a digital stirring hotplate (Fisher Scientific). For each catalyst 

and solvent combination, different metal:glucose molar ratios were used. Reactions on 

Sn-Beta in water were typically carried out using 1.0 g of a 10% (w/w) glucose 

solution and a 1:100 Sn:glucose molar ratio. Reactions on Sn-Beta in methanol were 

typically carried out using 1.0 g of a 1% (w/w) glucose solution and a 1:100 

Sn:glucose molar ratio. Reactions on SnO2/Si-Beta in water and methanol were 

typically carried out using 1.0 g of a 1% (w/w) glucose solution and a 1:20 Sn:glucose 

molar ratio. Reactions on SnO2-SiO2 were performed using 1.5 g of a 1% (w/w) 

glucose solution and a 1:10 Sn:glucose molar ratio. 

 Reactors were placed in the oil bath for specific time intervals and quenched 

by cooling in an ice bath. Small aliquots were extracted, filtered with 0.2 m PTFE 

syringe filter, and mixed with D-mannitol (Sigma-Aldrich,  98%) solutions used as 

an internal standard for quantification (10% (w/w) mannitol for experiments with Sn-

Beta in water; 1.5% (w/w) mannitol otherwise). Samples were analyzed by high 

performance liquid chromatography (HPLC) using an Agilent 1200 system (Agilent) 
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equipped with PDA UV (320 nm) and evaporative light scattering (ELS) detectors. 

Glucose, fructose, mannose and mannitol fractions were separated with a Hi-Plex Ca 

column (6.5 x 300 mm, 8 µm particle size, Agilent) held at 358 K, using ultrapure 

water as the mobile phase at a flow rate of 0.01 mL s
-1

. Turnover rates were calculated 

by normalizing the total moles of glucose converted by the total moles of Sn on the 

catalyst. For liquid NMR analysis of products formed from isotopic labeling studies 

using D-glucose-D2 (Cambridge Isotope Laboratories,  98%) and D-glucose-
13

C-C1 

(Cambridge Isotope Laboratories,  98%), glucose, mannose and fructose fractions 

were first separated by HPLC, isolated by evaporation of H2O, and dissolved in D2O 

(Cambridge Isotope Laboratories, 99.9%). 

4.4 N2 Adsorption Isotherms and DRUV 

N2 adsorption isotherms (77 K) are shown for Si-Beta (Figure 3.12), Sn-Beta 

(Figure 3.13), SnO2/Si-Beta-E (Figure 3.14) and SnO2/Si-Beta (Figure 3.15). Total 

micropore volumes were determined from linear extrapolation of N2 uptakes in 

mesopore regions (P/P0 ~ 0.1-0.4) to zero relative pressure and from the liquid N2 

molar density (0.029 mol cm
-3

). This method gave values of 0.19, 0.20, 0.20 and 0.12 

cm
3
 g

-1
 for Si-Beta, Sn-Beta, SnO2/Si-Beta-E and SnO2/Si-Beta, respectively. The 

value for SnO2/Si-Beta (0.12 cm
3
 g

-1
) is lower than expected if SnO2 domains (2.67 

wt%, 6.95 g cm
-3

) were located in extracrystalline phases of Si-Beta (0.185 cm
3
 g

-1
) or 

occluded volume within Si-Beta voids (0.181 cm
3
 g

-1
), suggesting that SnO2 particles 

within the pores of SnO2/Si-Beta also prevent access to a fraction of the 

intracrystalline void volume.  
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Figure 3.12 N2 adsorption isotherm (77 K) for Si-Beta. 
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Figure 3.13 N2 adsorption isotherm (77 K) for Sn-Beta. 
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Figure 3.14 N2 adsorption isotherm (77 K) for SnO2/Si-Beta-E. 
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Figure 3.15 N2 adsorption isotherm (77 K) for SnO2/Si-Beta. 

 

  

0

20

40

60

80

100

120

140

160

180

200

0 0.2 0.4 0.6 0.8 1

V
a
d

s
 (

c
m

3
g

-1
)

P/P0P/P0

V
a
d

s
(c

m
(S

T
P

)3
g

-1
)



95 

 

 

The DRUV spectrum of Si-Beta is shown in Figure S.7; the DRUV spectra for 

all other samples in this study are shown in Figure 3.4 of the main text. 

  

Figure 3.16 DRUV spectrum of Si-Beta. 
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4.5 
1
H and 

13
C NMR Spectra of Sugars after Reaction of Glucose-D2 with SnO2/Si-

Beta in Water 

The 
1
H

 
NMR spectrum of the glucose fraction after reaction of glucose-D2 

with SnO2/Si-Beta in water is shown in Figure 3.17. The resonance near  = 3.1 ppm 

reflects the presence of a proton at the C-2 position in glucose. This suggests that D-

atoms initially located at the C-2 position have been scrambled isotopically, as 

expected from the formation of enolate species via SnO2-catalyzed proton abstraction 

at the-carbonyl carbon atom of glucose. We have previously reported the 

scrambling of D-atoms at the C-2 position when glucose-D2 is isomerized via the 

proton-transfer mechanism in aqueous NaOH (resonance at  = 74.1 ppm, Figure 

3.13d), but not when isomerized via the intramolecular hydride shift mechanism on 

Sn-Beta in water (no resonance at  = 74.1 ppm, Figure 3.13c). 

Enolate intermediates can form unlabeled glucose via reprotonation, or 

unlabeled fructose via isomerization. The resonance  = 3.45 ppm in the fructose 

fraction after reaction glucose-D2 with SnO2/Si-Beta in water (Figure 3.19) confirms 

the presence of a proton at the C-1 position in fructose. We have previously reported 

that the deuterium atoms are retained at C-1 positions in fructose when isomerization 

occurs on Sn-Beta (no resonances at  = 63.8 and 62.6 ppm, Figure 3.13f), but are not 

retained when isomerization occurs on aqueous NaOH (resonances at  = 63.8 and 

62.6 ppm, Figure 3.13g). 
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Figure 3.17 
1
H NMR spectrum of glucose fraction after reaction of glucose-D2 with SnO2/Si-Beta 

in water at 373 K for 1h. (a) : 3-5.2 ppm; * denotes H2O. (b) : 3-3.3 ppm.  
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Figure 3.18 
13

C NMR spectra of a) unlabeled glucose, b) labeled glucose-D2, c) glucose fraction 

obtained after reacting glucose-D2 with Sn-Beta, d) glucose fraction obtained after reacting 

labeled glucose-D2 with NaOH, e) unlabeled fructose, f) fructose fraction obtained after reacting 

labeled glucose-D2 with Sn-Beta, and g) fructose fraction after reacting labeled glucose-D2 with 

NaOH. Reproduced with permission from reference 1 (Y. Roman-Leshkov, M. Moliner, J. A. 

Labinger and M. E. Davis, Angew. Chem.-Int. Edit., 2010, 49, 8954-8957), copyright 2010, Wiley-

VCH Verlag GmbH & Co. KGaA, Weinheim. 

 

 
Figure 3.19 1

H NMR spectrum of fructose fraction after reaction of glucose-D2 with SnO2/Si-

Beta in water at 373 K for 1 h.  

 

4.6 
1
H NMR Spectra of Sugars After Reaction of Glucose-D2 with SnO2/Si-Beta in 

Methanol. 

The 
1
H

 
NMR spectrum of the glucose fraction after reaction of glucose-D2 

with SnO2/Si-Beta in methanol is shown in Figure 3.20. The resonance at  = 3.1 ppm 

is assigned to a proton at the C-2 position in glucose, indicating isotopic scrambling 
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of some of the D-atoms in glucose. These observations are consistent with the 

formation of enolate species via SnO2-catalyzed proton abstraction at the-carbonyl 

carbon atom of glucose-D2, which can reprotonate to form unlabeled glucose or 

isomerize to form unlabeled fructose. The resonance  = 3.45 ppm in the fructose 

fraction after reaction glucose-D2 with SnO2/Si-Beta in methanol (Figure 3.21) 

confirms the presence of a proton at the C-1 position in fructose, in contrast to the 

deuterium expected if isomerization were to occur via an intramolecular hydride shift. 

 

 

Figure 3.20 
1
H NMR spectrum of glucose fraction after reaction of glucose-D2 with SnO2/Si-Beta 

in methanol at 373 K for 1 h. (a) : 3-5.2 ppm; * denotes H2O. (b) : 3-3.3 ppm.  
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Figure 3.21 

1
H NMR spectrum of fructose fraction after reaction of glucose-D2 with SnO2/Si-

Beta in methanol at 373 K for 1 h.  
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Chapter 4 : Active Sites in Sn-Beta for Glucose Isomerization to Fructose and 

Epimerization to Mannose 

1. Introduction 

We have previously seen that tetravalent Lewis acidic metal centers (Sn
+4

 and 

Ti
+4

) isolated within hydrophobic, pure-silica molecular sieves with the zeolite beta 

framework topology (Sn-Beta and Ti-Beta, respectively) catalyze the isomerization of 

glucose to fructose in aqueous media.
1–4

 Framework Sn sites mediate the ring opening 

of glucose and coordinate with glucose O1 and O2 atoms prior to isomerization via an 

intramolecular hydride shift from the C2 to C1 position (1, 2 intramolecular hydride 

shift) in the ring-opened glucose chain.
1
 This glucose isomerization reaction pathway 

is analogous to that observed in metalloenzymes such as D-xylose isomerase XI that 

contains two divalent Lewis acid metal centers (e.g., Mg
2+

 or Mn
2+

) confined within a 

hydrophobic pocket.
5–7

 Extraframework SnOx clusters located within hydrophobic 

micropores of pure-silica zeolite beta, but not at external crystallite surfaces or on 

amorphous supports, are also able to isomerize glucose to fructose in aqueous 

solutions.
2
 However, unlike the framework Sn centers, these extraframework 

intrazeolitic SnOx clusters act as solid bases that catalyze glucose isomerization via a 

LdB-AvE (Lobry de Bruyn-Alberda van Ekenstein) rearrangement that involves 

enolate intermediates,
2,8

  and the hydrophobic surrounding voids protect SnOx surface 

sites from inhibition or deactivation that otherwise occurs in the presence of liquid 

water. 

Homogeneous Lewis acids such as molybdate anions
9–11

 and nickel(II) 

diamine complexes
12–14

 have been reported to catalyze the epimerization of glucose to 

mannose by the Bilik reaction. With the use of 
13

C as an isotopic tracer 
13

C- mannose 

formed exclusively 
13

C2-glucose, being the mannose epimerization into glucose by 
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1,2 intramolecular carbon shift. Hayes et al.
9
 suggested that with dimolybdate anionic 

complexes involving the carbonyl oxygen and the  hydroxylic oxygen of the aldose at 

the C2, C3 and C4 are formed, leading to bond formation between the C1 and C3 and 

cleavage of the C2-C3 cleavage to produce the epimer. 

Framework Sn centers in Sn-Beta were proposed by Corma et al.
15

 to be 

present in both “open” and “closed” forms that respectively correspond to a partially 

hydrolyzed Sn site ((HO)-Sn-(OSi)3) and a non-hydrolyzed Sn site (Sn-(OSi)4) 

(Figure 4.1a and 1b, respectively). The open site was proposed to be more active in 

the Baeyer-Villiger oxidation of cyclic ketones.
15

 Similarly, the open site has also 

been proposed to be active in the isomerization of glucose into fructose,
1
 with the 

open and closed sites being inter-convertible during calcination and reaction 

conditions. While we were able to observe the presence of the open and closed sites 

via 
119

Sn NMR, the previous experimental data could not conclusively distinguish 

which site (or both) is the active site for glucose isomerization.
1
 Computational results 

suggest that isomerization pathways are catalyzed with lower barriers on open than on 

closed sites.
1
 Khouw and Davis

16
 exchanged Na

+
 onto the silanol groups (Si-OH) 

adjacent to open Ti sites ((HO)-Ti-(OSi)3) in TS-1 and completely inhibited the 

catalytic activity for alkane oxidation with hydrogen peroxide, providing conclusive 

evidence that open Ti sites are the active sites for alkane oxidation. Thus, it is possible 

that the silanol group adjacent to the open Sn site in Sn-Beta could influence the rates 

and selectivities of glucose isomerization catalysis. Recently, Rai et al.
17

 used density 

functional theory calculations to show that the isomerization of glucose to fructose 

proceeds via a lower energy pathway when glucose binds to an open Sn site in a 

monodentate mode that involves the silanol group adjacent to the open Sn site, 

relative to a pathway where glucose binds to the Sn site in a bidentate mode that lacks 
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the involvement of the neighboring silanol group. Conversely, the bidentate binding 

mode results in a lower energy pathway for the epimerization of glucose to mannose 

than the monodentate binding mode.
17

 If the epimerization pathway is lower in energy 

than the isomerization pathway when silanol groups adjacent to Sn sites are not 

involved in the mechanism, a detail that is not addressed in the paper by Rai et al.
17

, it 

would suggest that the active site in Sn-Beta may be altered in a way that precludes 

the involvement of the neighboring silanol in the reaction pathway. 

 

Figure 4.1 Schematic representation of the (a) “closed” and (b) “opeed” sites in Sn-Beta, as well 

as (c) Na-exchanged open site and (d) NH3 dosed open site, all in their dehydrated state. “X” 

denotes framework O-Si units. 

In this chapter the structure of the framework Sn site in Sn-Beta is examined. 

The mechanistic role of the silanol group adjacent to the open Sn site is analyzed by 

exchanging its proton with a sodium cation. Evidence is provided that Na-exchanged 

Sn-Beta catalyzes the epimerization of glucose to mannose via 1, 2 intramolecular 

carbon shift with high selectivity in methanol and in concentrated aqueous NaCl 

solutions. In water, the selectivity to isomerization to fructose via 1, 2 intramolecular 

hydride shift increases with time because Na
+
 ions are removed during reaction and 

neighboring silanol groups are restored. These data clearly show that the open Sn site 
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is the active site for both glucose isomerization and epimerization reactions, with the 

former prevailing on open sites with adjacent silanol groups in their proton form and 

the latter on open sites where the adjacent silanol is exchanged with Na
+
. 

 

2. Results and Discussion 

2.1 Summary of Microporous Materials 

Successive sodium ion exchanges were performed by stirring calcined Sn-Beta 

in a solution of 1 M NaNO3 and 10
-4

 M NaOH in distilled water, obtaining three 

different sodium exchanged Sn-Beta (Sn-Beta-1Ex, Sn-Beta-2Ex, and Sn-Beta-3Ex, 

respectively). The triple exchanged Sn-Beta (Sn-Beta-3Ex) was acid washed (Sn-

Beta-AW) in 1 M H2SO4. Sn-Beta was also synthesized with NaNO3 present in the 

synthesis gel with different ratios of Si/Na (Si/Na = 100, 60 and 30).  Ammonia, NH3, 

was adsorbed on Sn-Beta (Sn-Beta-NH3) and also regenerated (Sn-Beta-NH3-Cal) by 

calcination. The syntheses of all of these materials are discussed in detail at the end of 

this chapter in the Experimental Procedure.  

2.2 Characterization of Microporous Materials 

The powder X-ray patterns of Sn-Beta, Sn-Beta-1Ex, Sn-Beta-2Ex, Sn-Beta-

3Ex, Sn-Beta-AW, Sn-Beta-NH3, Sn-Beta-NH3-Cal and Na-Sn-Beta (Si/Na = 100, 60 

and 30) (Figure 4.2 and Figure 4.3) show that each of the samples is highly crystalline 

and has the zeolite beta framework topology. No diffraction lines were observed at 2 

values of 26.7
o
 and 34.0

o
 that are characteristic of bulk SnO2. SEM images (Figure 

4.4) indicate that the crystallite size of Sn-Beta is between 5-8 m, and does not 

change significantly after exchange with NaNO3/NaOH or treatment with NH3. Na-

Sn-Beta-30 (Figure 4.5) and other materials with gel Na/Sn > 30 (results not 



106 

 

 

presented here because of the high impurity content) contain an impurity that consists 

of dark, amorphous (determined by powder X-ray diffraction) particles that are not 

observed in Na-Sn-Beta-60 and Na-Sn-Beta-100. Thus, synthesis gels with high 

amounts of Na resulted in contaminating amorphous solids that had high contents of 

Na and Sn, with a Si/Sn and Na/Sn ratio of 15 and 2.28, respectively (measured by 

EDS). Bellussi et al.
18

 proposed that the insertion of titanium into the silicate 

framework (TS-1) is inhibited when alkali metal ions are present in the synthesis gel 

due to the formation of alkali titanates. Here, it is possible that the Sn atoms in the 

synthesis gels form alkali stannates that are part of the amorphous phase impurity, 

thereby lowering the Sn and Na content of the crystalline Na-Sn-Beta that is formed. 
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Figure 4.2 Powder X-ray powder diffraction patterns of Sn-Beta, Sn-Beta-1Ex, Sn-Beta-2Ex, Sn-

Beta-3Ex, Sn-Beta-AW, Sn-Beta-NH3 and Sn-Beta-NH3-Cal (top to bottom).  
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Figure 4.3 Powder X-ray powder diffraction patterns of Sn-Beta with Si/Na synthesis gel 

composition of 100, 60, and 30. 
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Figure 4.4 SEM images of (a, b) Sn-Beta, (c, d) Sn-Beta-1Ex, (e, f) Sn-Beta-3Ex, and (g, h) Sn-

Beta-NH3. 
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Figure 4.5 SEM images of Na-Sn-Beta-30. 

 

The total micropore volumes of the samples were determined from Ar 

adsorption isotherms (87K), and the results are listed in Table 4-1. There is a decrease 

in the micropore volume of all Na exchanged materials that might be due to the 

presence of excess NaNO3 that remains on the solid after Na exchange. The final 

wash in the exchange procedure was performed with 1M NaNO3 because the use of 

distilled water for the final rinse results in partial Na
+
 removal. The FTIR spectra 

(Figure 4.23) of the Na exchanged materials indeed show a broad shoulder in the 

1300 to 1500 cm
-1

 IR range that contains the IR band observed for the NO3
-
 ion.

19
 Sn-

Beta-AW has the same micropore volume (0.19 cm
3
g

-1
) as the parent Sn-Beta 

material, showing that the measured decrease in microporosity for the Na-exchanged 

materials is not due to a loss of crystallinity, but due to the excess NaNO3. Na-Sn-

Beta-60 and Na-Sn-Beta-100 exhibit a similar micropore volume to Sn-Beta (Table 

4-1), but Na-Sn-Beta-30 has a micropore volume of 0.14 cm
3
g

-1
. This significant 

decrease in micropore volume is likely due to the amorphous particle impurities. The 

ammonia-dosed Sn-Beta showed a slight decrease in the micropore volume, giving 

0.17 cm
3
 g

-1
, which was recovered after calcination (0.19 cm

3
g

-1
).  
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Catalyst Si/Sn
a
 Na/Sn

a
 

Ar micropore 

volume
b
 (cm

3
 g

-1
) 

IR bands
       

(cm
-1

) 

Sn-Beta 95 0.00 0.19 2315, 2307, 2276 and 2266 

Sn-Beta-1Ex 115 3.80 0.16 2310, 2280 and 2274 

Sn-Beta-2Ex 159 4.38 0.15 2310, 2280 and 2274 

Sn-Beta-3Ex 140 4.85 0.16 2310, 2280 and 2274 

Sn-Beta-AW 104 0.27 0.19 2315, 2307, 2276 and 2266 

Na-Sn-Beta-100 113 0.12 0.18 n.d. 

Na-Sn-Beta-60 127 0.26 0.19 n.d. 

Na-Sn-Beta-30 91 0.94 0.15 2310, 2280 and 2274 

Sn-Beta-NH3 105 0.00 0.17 2306 and 2270 

Sn-Beta-NH3-Cal 117 0.00 0.19 2315, 2307, 2276 and 2266 
a
Determined by Energy Dispersive X-ray Spectroscopy (EDS).The highest measured Si/Sn standard 

deviation for three scans of different parts of the same material was ± 30, while the highest Na/Sn 

standard deviation was of ± 1.25. These maximal standard deviations may be used to estimate the 

uncertainty of measurement for all samples. 
b
Determined from the Ar adsorption isotherm (87K). 

C
n.d., not determined 

Table 4-1 Site and structural characterization of samples used in this study. 

Table 4-1 lists the Sn and Na contents for all of the samples in this study. The 

Na/Sn ratio increased with the number of consecutive sodium ion exchanges, with the 

highest ratio being 4.38 after three consecutive exchanges with NaNO3/NaOH. Na/Sn 

ratios above unity likely reflect the presence of sodium nitrate deposited on the 

sample and some Na exchange occurring at silanol groups other than the ones 

adjacent to open Sn centers. Acid treatment removed most of the sodium from the 

zeolite, as the Na/Sn ratio in Sn-Beta-AW decreased to 0.27. The Na/Sn ratio also 

increased in the solids synthesized in the presence of sodium (Na-Sn-Beta-100, 60 

and 30) as the sodium concentration increased in the synthesis gels. 

2.3 Structural Characterization of the Sn Sites in Sn-Beta 

The nature of Lewis acidic Sn sites in Sn-Beta and post-synthetically treated 

Sn-Beta samples was probed by monitoring changes in IR bands of the stretching 

vibrations of the C≡N group (2260-2340 cm
-1

)
20

 of deuterated acetonitrile during 

temperature-programmed desorption experiments (Figure 4.6, Figure 4.24, Figure 
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4.25, Figure 4.26 and Figure 4.27). The IR spectra for Sn-Beta exposed to CD3CN 

(Figure 4.6) show bands at 2315, 2307, 2276, and 2266 cm
-1

. The CD3CN IR bands at 

2276 and 2266 cm
-1

 have been assigned to CD3CN coordinated to silanol groups and 

physisorbed CD3CN, respectively, while the bands at 2315 and 2307 cm
-1

 fall in the 

range that has been assigned to CD3CN coordinated to Lewis acid sites.
20,21

 These 

results are consistent with Corma et al.,
15

 who assigned the 2316 cm
-1

 band to CD3CN 

bound at the open Sn site, and the 2308 cm
-1

 band to CD3CN bound at a weaker Lewis 

acid site proposed to be the closed Sn site.  
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Figure 4.6 Baseline corrected IR spectra with decreasing CD3CN coverage on (a) Sn-Beta, (b) Sn-

Beta-3Ex, and (c) Sn-Beta-NH3. 
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After NaNO3/NaOH treatments (Figure 4.24, Figure 4.25 and Figure 4.6), the 

CD3CN bands associated with CD3CN bound to the open and closed sites disappear or 

diminish in intensity, while a single broad IR band with low intensity appears and is 

centered between 2310-2312 cm
-1

. Corma et al.
22

 showed that a broad band centered 

at 2310 cm
-1

 in Sn-MCM-41 may be deconvoluted into multiple bands that 

correspond to different Sn environments. Similarly, the broad band observed in Na-

exchanged Sn-Beta samples may have multiple contributions from the residual non-

exchanged Sn-sites. Interestingly, a more prominent band appears at 2280 cm
-1

 in 

these Na-exchanged Sn-Beta materials (Figure 4.24, Figure 4.25 and Figure 4.6), 

which we tentatively associate with the Lewis acid site responsible for the reactivity 

of these samples. Despite the lower frequency of this new band (2280 cm
-1

) compared 

to the open Sn site (2315 cm
-1

), which may suggest a weaker interaction
20

 of CD3CN 

with the Lewis acid centers in Na-exchanged Sn-Beta, the CD3CN that gives rise to 

this band desorbs more slowly than CD3CN bound to the closed site (2307 cm
-1

) and 

at comparable rates to CD3CN bound to the open site (Figure 4.6a and b). These 

findings suggest that, in addition to direct lone pair donation of CD3CN to the Lewis 

acidic Sn center, secondary interactions of CD3CN with the site or its surrounding 

environment may influence the binding strength and the (C≡N) of CD3CN. When the 

Na exchange procedure was performed on Si-Beta, the resulting material did not show 

strongly-bound CD3CN at 2280 cm
-1

 (Figure 4.26), confirming that this IR band is not 

a result of CD3CN adsorbed to Na-exchanged terminal silanol groups, and requires 

the Lewis acidity of a framework Sn site. The synthetic Na-Sn-Beta-30 sample 

showed a similar desorption profile to that of the Na-exchanged Sn-Beta (Figure 

4.27), suggesting that Na
+
 ions introduced to the framework Sn sites during synthesis 

lead to a similar change in site properties as Na
+
 ions introduced post-synthetically. 



115 

 

 

CD3CN adsorption onto Sn-Beta-NH3 gives rise to IR bands at 2306 and 2270 

cm
-1

(Figure 4.6c). CD3CN associated with the previously unobserved 2270 cm
-1

 band 

desorbs at a rate similar to that of CD3CN bound to the closed site of Sn-Beta. While 

the IR band assigned to CD3CN bound to the closed site at 2306 cm
-1

 (as confirmed 

by 
119

Sn NMR, vide infra) was present in Sn-Beta-NH3, the IR band of CD3CN bound 

to the open site at 2315 cm
-1

 was not observed (Figure 4.6c). These data indicate that 

NH3 remains bound to open Sn sites in Sn-Beta-NH3, but not to closed Sn sites, after 

exposure to ambient air and treatment prior to CD3CN exposure (vacuum at 373 K, 

2h) (Figure 4.7), consistent with proposals that open Sn sites are stronger Lewis acid 

sites.
15

 We propose that open Sn sites with bound NH3 (Figure 4.1d) are more 

electron-rich, and in turn bind CD3CN more weakly, than its analog in Sn-Beta 

(Figure 4.1b). The open Sn site with pre-adsorbed NH3 (Figure 4.1d) seems to be a 

likely candidate for the IR band at 2270 cm
-1

 (Figure 4.6c), which reflects weakly-

bound CD3CN that disappears much more rapidly than the IR band at 2315 cm
-1

 for 

CD3CN bound more strongly at open Sn sites (Figure 4.6a). On the other hand, the 

presence of the 2306 cm
-1

 IR band after CD3CN adsorption onto the Sn-Beta-NH3 

suggests that any NH3 initially bound to the closed site (Figure 4.7b) desorbs after 

exposure to ambient air or vacuum treatment at 373 K (Figure 4.7c), and results in a 

closed Sn site of similar structure to that in untreated Sn-Beta. 
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Figure 4.7 Schematic representation of the NH3 dosed Sn-Beta sample history that explains its 

characterization behavior. The hydrated open and closed sites (a) are dehydrated and saturated 

with ammonia (b). After exposure to ambient atmosphere and heated evacuation (373 or 393 K 

for IR and NMR studies, respectively), only the open site is expected to retain the coordinated 

ammonia (c). “X” denotes framework O-Si units. 

 

The 
119

Sn NMR spectra of 
119

Sn-Beta after calcination and exposure to 

ambient conditions, which allows the Sn centers to become hydrated, shows a main 

resonance centered at -688 ppm (Figure 4.8a) that has been assigned to octahedrally 

coordinated Sn in the framework.
1,2,23

 Upon dehydration at 383 K to remove the 

coordinating water, the Sn resonances shift to -423 and -443 ppm (Figure 4.8d) that 

are characteristic of tetrahedrally-coordinated Sn. We have shown previously through 

1
H-

119
Sn CPMAS NMR that the open and closed sites correspond to the resonances 

centered at -423 and -443 ppm, respectively, because only the -423 ppm resonance 

was detected when cross-polarization occurred from nearby protons.
1
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Figure 4.8 
119

Sn MAS Solid State NMR spectra of 
119

Sn-Beta after different treatments: (a) 

calcination, (b) three Na-exchanges after calcination, (c) NH3 adsorption after calcination, (d) 

dehydration after calcination, (e) dehydration after three Na-exchanges and (f) dehydration after 

NH3 adsorption. 

Three Na-exchanges performed on 
119

Sn-Beta result in a decreased intensity of 

the sharp -688 ppm resonance observed in 
119

Sn-Beta (Figure 4.8a), and instead result 

in a broad shoulder that appears to begin at -650 ppm and merge into the broader 

features of the 
119

Sn-Beta spectrum (Figure 4.8b). Dehydration of this sample 

(vacuum treatment at 398 K, 2h) leads to a shift of the resonance associated with the 

tetrahedral open site at -423 ppm (Figure 4.8d) to -419 ppm (Figure 4.8e). The 

expanded chemical shift range in the -400 to -480 ppm region of 
119

Sn MAS Solid 

State NMR spectra of the dehydrated samples can be found in Figure 4.28. A small 

shoulder develops at -435 ppm and was confirmed not to be a spinning sideband of 
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another resonance (Figure 4.8e). The closed site resonance at -443 ppm (Figure 4.8d) 

is not shifted by the Na-exchange (-443 ppm, Figure 4.8e). The 
1
H-

119
Sn CPMAS 

NMR of 
119

Sn-Beta dehydrated after three Na-exchanges shows a resonance at -419 

ppm, indicating that these Sn centers have a proton source nearby that cross-polarizes 

the 
119

Sn atom (Figure 4.29). This observation suggests that Na exchanges only one of 

the two available protons present in the silanol and stannanol groups in the dehydrated 

open Sn site (Figure 4.1b). The silanol proton is the more likely position for Na 

exchange (Figure 4.1c) because the proposed mechanisms for glucose isomerization 

and epimerization on Sn-Beta require bonding to glucose through the stannanol 

group.
17

 Note that some difficulties in optimizing 
1
H-

119
Sn CPMAS conditions has 

been experienced, partly due to poor rf pulse coverage over 300 ppm during contact 

period at high spinning speed (14 kHz in this case). Because of the poor cross-

polarization efficiency, the 
1
H-

119
Sn CPMAS spectra (e.g., Figure 4.29b) were 

averaged over 30,000 transients, and the resonances detected in the tetrahedral range 

of the dehydrated Na-exchanged 
119

Sn-Beta do not allow us to characterize the origin 

of the small - 435 ppm shoulder (Figure 4.8e).  

Adsorption of ammonia onto 
119

Sn-Beta gives rise to two groups of broad 

resonances centered at -669 and -708 ppm (Figure 4.8c). Dehydration of this sample 

(evacuation at 398 K, 2h) gives rise to a resonance for the closed tetrahedral site (-443 

ppm, Figure 4.8f), but not for the open tetrahedral site found in 
119

Sn-Beta (-423 ppm, 

Figure 4.8d). New resonances are detected in -500 to -600 ppm range that suggest the 

presence of a different Sn coordination environment, which may have come from the 

open site of Sn-Beta as depicted in Figure 4.1d. The 
1
H-

119
Sn CPMAS NMR spectrum 

of the 
119

Sn-Beta dehydrated after ammonia adsorption confirms that there is no 
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proton source in the neighborhood of the closed site (-443 ppm), or of any 

tetrahedrally-coordinated Sn sites, after these treatments (Figure 4.30). 

These 
119

Sn NMR results are consistent with the interpretations of the IR 

spectra of Sn-Beta-NH3 after CD3CN adsorption, and lead to propose the Sn 

structures and coordinations in Figure 4.7. These findings suggest that the open Sn 

site is a stronger Lewis acid site than the closed Sn site (Figure 4.7a), and that it 

retains the adsorbed NH3 (Figure 4.7b) after vacuum treatment at 373 K (Figure 4.7c). 

Open Sn sites that coordinate one NH3 ligand would appear as penta-coordinated Sn 

sites in 
119

Sn NMR spectra, which it is speculated that it could give rise to the 

resonances detected in -500 to -600 ppm range (Figure 4.8f); however, we have not 

conclusively assigned these resonances at this time. Penta-coordinated open Sn sites 

with one NH3 ligand would also bind CD3CN more weakly than open Sn sites without 

coordinated NH3, and may give rise to the 2270 cm
-1

 CD3CN band observed in IR 

spectra (Figure 4.6c). These NMR data also suggest that NH3 bound to the closed Sn 

sites desorbs upon dehydration (Figure 4.7c), such that the behavior of the closed Sn 

sites in Sn-Beta-NH3 is similar to their behavior in Sn-Beta samples that have not 

been treated with NH3.  

 

2.4 Mannose Formation with Na containing Sn-Beta 

Fructose is the predominant product formed when Sn-Beta reacts with 1% 

aqueous glucose solutions at a 1:100 Sn:glucose ratio at 353 K for 30 min (Table 4-2 

and Table 4-5). At the noted glucose conversions, the carbon balances obtained are 

similar to those reported previously by our group.
3
 Experiments performed for the 

same reaction time and temperature with the sodium exchanged Sn-Beta samples led 
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to similar glucose conversions (6.0-6.8%, Table 4-2) as with Sn-Beta (6.4%,Table 

4-2), however, the mannose yield increased systematically from 0.4% to 3.3% and the 

fructose yields decreased from 5.0% to ~ 2% with increasing Na content. Similar 

results were observed with increasing Na content for Na-Sn-Beta samples synthesized 

directly (Table 4-2), suggesting that these selectivity differences do not depend on the 

method used to introduce Na
+
 cations into Sn-Beta. 

 

 

Catalyst Solvent XGluc.(%) YFruc.(%) YMann.(%) 

Sn-Beta H2O 6.4 5.0 0.4 

 CH3OH 23.2 10.3 3.9 

Sn-Beta-1Ex H2O 6.0 2.1 1.8 

 CH3OH 12.6 3.2 5.0 

Sn-Beta-2Ex H2O 6.1 1.8 2.5 

 CH3OH 12.2 2.1 6.7 

Sn-Beta-3Ex H2O 6.8 2.3 3.3 

 CH3OH 12.4 0.0 7.9 

Sn-Beta-AW H2O 5.4 3.9 0.0 

 CH3OH 16.9 6.1 2.8 

Na-Sn-Beta-100 H2O 6.8 5.1 1.1 

 CH3OH 19.4 8.4 3.3 

Na-Sn-Beta-60 H2O 7.3 4.0 2.7 

 CH3OH 17.2 8.0 3.0 

Na-Sn-Beta-30 H2O 5.8 1.1 3.5 

  CH3OH 6.8 0.0 4.6 

Sn-Beta-NH3 H2O 3.8 1.9 2.4 

 CH3OH 3.0 0.0 1.9 

Sn-Beta-NH3-Cal. H2O 5.0 3.2 0.0 

 CH3OH 17.6 7.2 2.6 

 
Table 4-2 Glucose conversion (X) and fructose and mannose yields (Y) in H2O and CH3OH 

solvents. Reaction conditions: 1% (w/w) glucose solutions, 1:100 metal:glucose ratio, 353 K, 30 

min. 

 

Equivalent reaction conditions led to higher glucose conversions on Sn-Beta 

and the Na-containing Sn-Beta samples in methanol than in water (Table 4-2 and 

Table 4-5), with glucose conversions of 23.2% for Sn-Beta and 12.2-12.6% for Na-
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exchanged Sn-Beta (Table 4-2). As in the case of water solvent, Sn-Beta samples with 

increasing Na/Sn ratio led to mannose yields that increased systematically from 3.9% 

to 7.9% and to fructose yields that decreased systematically from 10.3% to 0.0% 

(Table 4-2). Similarly, increasing the sodium content in the synthesis gel of Sn-Beta 

led to samples that produced higher mannose yields and lower fructose yields (0.0% 

fructose for Na-Sn-Beta-30, Table 4-2). The large black particles of the amorphous 

phase impurity formed from synthesis gels with Si/Na ratios less than 30 were 

isolated from the crystalline solids and did not react with glucose in water, but were 

able to catalyze glucose-fructose isomerization in methanol. 

The sodium containing Sn-Beta catalysts showed a higher selectivity towards 

mannose when the reaction was performed in methanol than in water. Furthermore, 

the fructose to mannose ratio in aqueous media significantly increased as the reaction 

progressed (Table 4-2 and Table 4-5). These results suggested to us that sodium 

decationation could be occurring in aqueous media at a rate that would cause the 

reactivity to change over the timeframe of the experiment. Thus, we investigated the 

effects of adding sodium salt to the aqueous reaction solution in order to maintain the 

sodium content in the solid more effectively during reaction (Table 4-3 and Table 

4-6). When glucose was reacted with Sn-Beta in aqueous NaCl solutions, mannose 

and fructose were produced in nearly equal yields (4.1% and 4.5%, respectively; 

Table 4-3 and Table 4-6), and the solid had a Na/Sn ratio of 2.65 after reaction (Table 

4-3 and Table 4-6) indicating that Na
+
 was exchanging into the solid during reaction. 

Sn-Beta pre-exchanged with Na (Sn-Beta-3Ex) maintained mannose selectivity during 

the course of the reaction when NaCl was added to the aqueous reaction solutions. 

These results indicate that the presence of a sodium cation, whether added 

synthetically or exchanged onto the material prior to or during the reaction, shifts the 
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reaction selectivity of Sn-Beta from the 1, 2 intramolecular hydride shift-mediated 

isomerization that yields fructose to the 1, 2 intramolecular carbon shift mediated-

epimerization that yields mannose. When water is used as the solvent for the reaction, 

the Na
+
 ion in the Sn active site is replaced by a proton and the catalyst reverts to a 

state that favors the formation of fructose, while in methanol the Na
+
 ion is retained 

for a longer time and the catalyst maintains its tendency to form mannose. The 

addition of excess sodium salt to aqueous reaction mixtures increases the extent to 

which Na exchanges onto the solid, in turn maintaining the selectivity of Sn-Beta 

towards mannose during the course of reaction.  

Catalyst Solvent XGluc.(%) YFruc.(%) YMann.(%) 

Sn-Beta
a
 H2O-NaCl 9.8 4.5 4.1 

Sn-Beta-1Ex H2O-NaCl 10.9 2.6 5.2 

Sn-Beta-2Ex H2O-NaCl 10.7 2.5 6.0 

Sn-Beta-3Ex H2O-NaCl 11.5 0.0 7.5 
a
After reaction the catalyst had a Si/Sn and a Na/Sn ratio of  115 and 2.65, respectively,  determined by 

Energy Dispersive X-ray Spectroscopy (EDS). The highest measured Si/Sn standard deviation for three 

scans of different parts of the same material was ± 30, while the highest Na/Sn standard deviation was 

of ± 1.25. These maximal standard deviations may be used to estimate the uncertainty of measurement 

for all samples. 

 
Table 4-3 Glucose conversion (X) and fructose and mannose yields (Y) with 0.2g NaCl/g H2O. 

Reaction conditions: 1% (w/w) glucose solutions, 1:100 metal:glucose ratio, 353 K, 30 min. 

 

The Sn-Beta sample that was dosed with NH3 showed lower glucose 

conversions in both water and methanol solvents (3.0-3.8%, Table 4-2) than Sn-Beta 

and the Na-containing Sn-Beta samples. Higher glucose conversions were observed 

with Sn-Beta-NH3 in water, with a resulting dark yellow post-reaction solution that 

may indicate the presence of humins formed from NH4OH that possibly could be 

formed in situ from the desorption of NH3. Upon calcination of the ammonia-dosed 

sample, the reactivity was nearly fully recovered in methanol and water (17.6% and 

5.0% glucose conversion, respectively, Table 4-2). The suppression of isomerization 
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reactivity on Sn-Beta-NH3 (Table 4-2) occurs together with the disappearance of the 

open site CD3CN IR band at 2315 cm
-1

 (Figure 4.6c) and with the disappearance of 

the open site 
119

Sn NMR resonance at -419 ppm (Figure 4.8f) in the dehydrated NH3-

dosed Sn-Beta. These data corroborate our proposal that the open site is the active site 

in the hydride-shift mediated glucose to fructose isomerization pathway in the 

absence of sodium, and is the active site for the epimerization of glucose to form 

mannose in the presence of sodium. 

 

2.5 Sodium Removal from Sn-Beta 

The Sn-Beta-3Ex sample was acid washed to remove Na
+
 from the sample 

(Sn-Beta-AW) and probed whether the effects of sodium on the reactivity of Sn-Beta 

were reversible. Sn-Beta-AW had much less sodium (Na/Sn = 0.27) than Sn-Beta-3Ex 

(Na/Sn = 4.85). The glucose conversion and the fructose and mannose yields 

observed with Sn-Beta-AW were very similar to that of the parent Sn-Beta (Table 

4-2). The decrease in mannose yield and concurrent increase in fructose yield after the 

acid treatment demonstrates that the effects of sodium addition are reversible, and are 

not a result of a permanent poisoning of the site active for glucose-fructose 

isomerization. 

The effect of the reaction solvent on the recyclability of the catalyst was 

probed by reacting Sn-Beta-3Ex with glucose in water and methanol under the 

previously stated reaction conditions (353 K for 30 min in a 1% (w/w) glucose 

solution) and washing once with the solvent used in the reaction. This cycle was 

repeated twice and the reaction results after each cycle are shown in Table 4-4. The 

Na/Sn ratio of the material decreased in each cycle, with a greater extent of sodium 

loss in the case of aqueous media. A decrease in sodium content in the zeolite after 
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each cycle also led to a decrease in the mannose yield and corresponding increase in 

the fructose yield (Table 4-4), consistent with the proposal that open Sn sites with Na-

exchanged silanol groups are active sites for the epimerization reaction. 

 

Cycle Si/Sn
a
 Na/Sn

a
 Solvent XGluc.(%) YFruc.(%) YMann.(%) 

1 115 4.38 H2O 8.5 1.7 4.5 

2 136 0.93 H2O 8.6 4.6 3.9 

3 123 0.26 H2O 9.0 6.4 1.2 

1 115 4.38 CH3OH 9.4 0.0 6.5 

2 132 1.26 CH3OH 10.2 1.5 6.0 

3  119  0.82 CH3OH 13.7 3.7 6.2 
a
Determined by Energy Dispersive X-ray Spectroscopy (EDS). The highest measured Si/Sn standard 

deviation for three scans of different parts of the same material was ± 30, while the highest Na/Sn 

standard deviation was of ± 1.25. These maximal standard deviations may be used to estimate the 

uncertainty of measurement for all samples. 

 

Table 4-4 Glucose conversion (X) and fructose and mannose yields (Y) with Sn-Beta-3Ex in 

CH3OH and H2O. After the first cycle the catalysts was washed with the solvent used in the 

reaction and reused under the same reaction and solvent conditions as the previous cycle. 

Reaction conditions: 1% (w/w) glucose solutions, 1:100 metal:glucose ratio, 353 K, 30 min. 

 

3.6 Glucose Isomerization and Epimerization Mechanisms 

1% (w/w) glucose labeled with 
13

C at the C1 position (
13

C-C1-glucose) was 

reacted at 353 K for 30 min with Sn-Beta in water, aqueous NaCl solutions (0.2g 

NaCl/g H2O), and methanol as solvents to determine the mechanism of glucose 

isomerization to fructose and epimerization to mannose. All 
13

C NMR spectra in 

Figure 4.9 show the presence of 
13

C in the C1 position (resonances at  = 95.8 and 

92.0 ppm) of the  and  pyranose forms of the starting labeled glucose, respectively. 

The fructose formed from reactions with Sn-Beta in all three solvents showed 
13

C in 

the C1 position (resonances at  = 63.8 and 62.6 ppm) for -pyranose and -furanose 

forms of fructose, as expected from isomerization mediated by 1, 2 intramolecular 

hydride shift.
1
 The 

13
C label was only observed in the C1 position (resonances at  = 
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93.9 and 93.5 ppm) of  and  pyranose forms of mannose with water and methanol 

solvents in Sn-Beta, indicating that mannose was not formed by a 1, 2 intramolecular 

carbon shift. In contrast, the 
13

C label appeared in the C2 position (resonances at  = 

70.5 and 71.1 ppm) of the  and  pyranose forms of mannose with Sn-Beta in 

aqueous NaCl solutions, indicating that mannose was formed by the 1, 2 

intramolecular carbon shift mechanism of the Bilik reaction.
9
  

 

 
Figure 4.9

 13
C NMR spectra for reactant and products with Sn-Beta in a 1% (w/w) 

13
C1-glucose 

solution at 353 K for 30 min with the following solvent mixtures (a) H2O, (b) NaCl-H2O and (c) 

CH3OH. 

The experiment performed with Sn-Beta was also conducted with Sn-Beta-

3Ex in water, aqueous NaCl solutions (0.2g NaCl/g H2O), and methanol as solvents, 

and the resulting 
13

C NMR spectra are shown in Figure 4.10. In water, the fructose 
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products retained the 
13

C label in the C1 position (resonances at  = 63.8 and 62.6 

ppm), with a lower intensity relative to Sn-Beta, and the mannose product showed the 

13
C label only in the C2 position (resonances at  = 70.5 and 71.1 ppm). These results 

(along with reaction data for earlier reaction times in Table S.2) suggest that in water, 

Sn-Beta-3Ex initially forms mannose through the 1, 2 intramolecular carbon shift, but 

the loss of sodium from the active site results in the formation of fructose without 

carbon rearrangement. When methanol or concentrated aqueous NaCl solutions were 

used as solvents, mannose with 
13

C in the C2 position was observed as the main 

product. These results confirm that the switch in reaction mechanism from 

isomerization to epimerization of sodium-exchanged materials is not directly 

dependent on the solvent, but rather on the presence of sodium in the active site.  

 

 



127 

 

 

 
Figure 4.10

13
C NMR spectra for reactant and products with Sn-Beta-3Ex in a 1% (w/w) 

13
C1-

glucose solution at 353 K for 30 min with the following solvent mixtures (a) H2O, (b) NaCl-H2O 

and (c) CH3OH. 

 

Glucose epimerization into mannose can proceed via reversible enolization 

upon abstraction of -carbonyl protons (LdB-AvE rearrangement), or via an 

intramolecular carbon shift between C1-C2 positions.
24

 In order to confirm that the 

Sn-Beta containing Na
+
 was not epimerizing glucose to mannose by abstraction of the 

-carbonyl proton, glucose with deuterium at the C2 position (glucose-D2) was used 

as a reactant. The mannose formed with Sn-Beta-3Ex after 30 minutes at 353 K with 

1% (w/w) glucose solution in methanol did not show resonances at  = 93.9 and 93.5 

ppm (Figure 4.11) that correspond to the C1 positions of the  and  pyranose forms 

of mannose, respectively, due to the disruption of the Nuclear Overhauser Effect 



128 

 

 

(NOE). This NMR evidence indicates that with the sodium cation in the active site of 

Sn-Beta, the carbon in the C2 position of glucose moves along with its deuterium to 

the C1 position by the 1, 2 intramolecular carbon shift to form mannose, as it has been 

observed previously.
2
  

 

 

Figure 4.11
13

C NMR spectra for (a) reactant and products with Sn-Beta-3Ex in a 1% (w/w) 
13

C1-

glucose solutions at 353 K for 30 min in CH3OH and (b) mannose. 

 

3. Conclusion 

The proton containing partially hydrolyzed Sn site in zeolite beta, 

characterized by an IR band at 2315 cm
-1

 from adsorbed CD3CN and a 
119

Sn NMR 

resonance at -423 ppm in the dehydrated state (denoted as the open site) is the active 

site involved in the isomerization of glucose into fructose via a Lewis-acid mediated 
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hydride-shift mechanism; whereas a sodium containing open site analog, 

characterized by an IR band at 2280 cm
-1 

adsorbed CD3CN and a 
119

Sn NMR 

resonance at - 419 ppm in the dehydrate state, is the active site in the epimerization of 

glucose into mannose via a 1, 2 intramolecular carbon shift.   The sodium cation can 

be introduced into the active site of the zeolite, either by ion exchange of Sn-Beta or 

by incorporation of low amounts of sodium into the synthesis gel, with both methods 

resulting in samples that give higher epimerization selectivity relative to Sn-Beta. 

Acid wash of sodium containing materials gives nearly full recovery of initial activity 

of the parent Sn-Beta, showing that the alterations to the tin site by the sodium ion are 

reversible. The addition of NaCl to aqueous reaction solutions also enhanced the 

selectivity towards epimerization of glucose into mannose. These results, in 

combination with reusability studies in water and methanol, support the finding that 

the sodium cation is more prone to decationize in water than in methanol under 

reaction conditions. 
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Figure 4.12 Schematic representation of the isomerization of glucose to fructose with Sn-Beta 

(left) and epimerization of glucose to mannose with Sn-Beta in the presence of sodium (right). 

 

4. Experimental Procedure and Additional Figures 

4.1 Synthesis of Sn-Beta, 
119

Sn-Beta, Na-Sn-Beta and Si-Beta. 

Sn-Beta and 
119

Sn-Beta were synthesized according to previously reported 

procedures.
1
 15.25 g of tetraethylammonium hydroxide solution (Sigma-Aldrich, 35% 

(w/w) in water) were added to 14.02 g of tetraethylorthosilicate (Sigma-Aldrich, 98% 

(w/w)), followed by the addition of 0.172 g of tin (IV) chloride pentahydrate (Sigma-

Aldrich, 98% (w/w)) or of 0.121 g of 
119

Sn enriched tin (IV) chloride pentahydrate 

(Cambridge Isotopes, 82% isotopic enrichment). The mixture was stirred until 

tetraethylorthosilicate was completely hydrolyzed and then allowed to reach the 

targeted H2O:SiO2 ratio by complete evaporation of ethanol and partial evaporation of 
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water. Finally, 1.53 g of HF solution (Sigma Aldrich, 54% (w/w) in water) was added, 

resulting in the formation of a thick gel. The final molar composition of the gel was 1 

SiO2 / 0.0077 SnCl4 / 0.55 TEAOH / 0.54 HF / 7.52 H2O. As-synthesized Si-Beta 

(vide infra) was added as seed material (5 wt% of SiO2 in gel) to this gel and mixed. 

The final gel was transferred to a Teflon-lined stainless steel autoclave and heated at 

413 K in a static oven for 40 days. The recovered solids were centrifuged, washed 

extensively with water, and dried at 373 K overnight. The dried solids were calcined 

in flowing air (1.67 cm
3
 s

-1
, Air Liquide, breathing grade) at 853 K (0.0167 K s

-1
) for 

10 h to remove the organic content located in the crystalline material. 
119

Sn-Beta was 

calcined twice under the same conditions. 

Na-Sn-Beta was synthesized using the same procedure as Sn-Beta, but with 

the addition of NaNO3 (Sigma Aldrich, ≥ 99.0%) to the synthesis gel. The final molar 

composition of the gel was 1 SiO2 / x NaNO3 / 0.0077 SnCl4 / 0.55 TEAOH / 0.54 HF 

/ 7.52 H2O, where “x” was 0.010, 0.017 and 0.033 (Na-Sn-Beta-100, 60 and 30, 

respectively). The gel was transferred to a Teflon-lined stainless steel autoclave and 

heated at 413 K in a static oven for 25 days. The recovered solids were washed, dried 

and calcined using the same procedure as for Sn-Beta. Synthesis gels with Si/Na ratio 

lower than 30 yielded a heterogeneous material with small black particles dispersed 

among the zeolite. These black particles were separated from the zeolite by hand, and 

were found to be amorphous, having a Si/Sn and Na/Sn ratio of 15 and 2.28, 

respectively. 

Si-Beta was prepared by adding 10.01 g of tetraethylammonium fluoride 

dihydrate (Sigma-Aldrich, 97% (w/w) purity) to 10 g of water and 4.947 g of 

tetraethylorthosilicate (Sigma-Aldrich, 98% (w/w)). This mixture was stirred 

overnight at room temperature in a closed vessel to ensure complete hydrolysis of the 
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tetraethylorthosilicate. The targeted H2O:SiO2 ratio was reached by complete 

evaporation of the ethanol and partial evaporation of the water. The final molar 

composition of the gel was SiO2 / 0.55 TEAF / 7.25 H2O. The gel was transferred to a 

Teflon-lined stainless steel autoclave and heated at 413 K in a rotation oven (60 rpm) 

for 7 days. The solids were recovered by filtration, washed extensively with water, 

and dried at 373 K overnight. The dried solids were calcined in flowing air (1.67 cm
3
 

s
-1

, Air Liquide, breathing grade) at 853 K (0.0167 K s
-1

) for 10 h to remove the 

organic content located in the crystalline material. 

 

4.2 Na
+
 and H

+
 Ion Exchange of Zeolite Samples 

Each ion exchange step was carried out for 24 hours at ambient temperature, 

using 45 mL of exchange or wash solution per 300 mg of starting solids. For the 

procedures involving multiple ion-exchange steps, the ion-exchange solution was 

replaced every 24 hours without intermediate water washing. One, two, and three 

successive sodium ion exchanges (Sn-Beta-1Ex, Sn-Beta-2Ex, and Sn-Beta-3Ex, 

respectively) were performed by stirring calcined Sn-Beta in a solution of 1 M 

NaNO3 (Sigma Aldrich, ≥99.0%) and 10-4 M NaOH (Alfa Aesar 97%) in distilled 

water. The final material was recovered by centrifugation, and washed three times 

with 1 M NaNO3 in distilled water. Acid washed Sn-Beta (Sn-Beta-AW), was made 

by stirring the triply-exchanged Sn-Beta (Sn-Beta-3Ex) in 1 M H2SO4 (Macron Fine 

Chemicals, > 51%) for 1 h at ambient temperature, followed by separation by 

filtration and washing with 1 L of distilled water in 100 mL batches. Finally the 

material was dried in room temperature air and calcined in flowing air (1.67 cm
3
 s

-1
, 

Air Liquide, breathing grade) at 853 K (0.0167 K s
-1

). We note that the dehydration of 

sodium-exchanged materials resulted in changes in their catalytic properties; 
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therefore, to ensure comparable saturation of the samples with water, 24 h prior to 

reaction testing, all samples were placed in a chamber whose humidity was controlled 

by a saturated NaCl solution. 

4.3 Ammonia Adsorption onto Sn-Beta  

Ammonia gas dosing experiments were performed on Sn-Beta samples after 

drying in a Schlenk flask at 473 K for 2 h under vacuum. The dried Sn-Beta was 

cooled under dynamic vacuum to ambient temperature, and the flask was backfilled to 

101 kPa of anhydrous ammonia gas (Matheson Tri-Gas, 99.99%). After 24 h, the 

excess ammonia was evacuated and the sample was exposed to atmosphere (Sn-Beta-

NH3). The ammonia-saturated material was regenerated by calcination (Sn-Beta-

NH3-Cal) in  flowing air (1.67 cm
3
 s

-1
, Air Liquide, breathing grade) for 6 h at 853 K 

(0.0167 K s
-1

). 

4.4 Argon Adsorption 

Ar adsorption isotherms at 87 K were obtained using a Quantachrome 

Autosorb iQ automated gas sorption analyzer. Zeolite samples were degassed at 353 

K (0.167 K s
-1

) for 1 h, 393 K (0.167 K s
-1

) for 3 h and 623 K (0.167 K s
-1

) for 8 h 

prior to recording dry sample weight.  For Sn-Beta-NH3, the temperature during the 

degassing procedure never exceeded 473 K (0.167 K s
-1

). Relative pressures (P/P0) 

were measured between 10
-7

 and 1 at 87 K with precise volumetric Ar doses. Total 

micropore volume of each sample was determined from linear extrapolation of its Ar 

uptake in the mesopore regions (P/P0 ~ 0.1-0.4) to zero relative pressure and from the 

liquid Ar molar density (0.035 mol cm
-3

).  
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Figure 4.13 Ar adsorption isotherm (87 K) for Sn-Beta. 

 
 

Figure 4.14 Ar adsorption isotherm (87 K) for Sn-Beta-1Ex. 
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Figure 4.15 Ar adsorption isotherm (87 K) for Sn-Beta-2Ex. 

 
 

Figure 4.16 Ar adsorption isotherm (87 K) for Sn-Beta-3Ex. 
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Figure 4.17 Ar adsorption isotherm (87 K) for Sn-Beta-AW. 

 
 

Figure 4.18 Ar adsorption isotherm (87 K) for Sn-Beta-NH3. 
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Figure 4.19 Ar adsorption isotherm (87 K) for Sn-Beta-NH3-Cal. 

 
 

Figure 4.20 Ar adsorption isotherm (87 K) for Na-Sn-Beta-100. 
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Figure 4.21 Ar adsorption isotherm (87 K) for Na-Sn-Beta-60. 

 
Figure 4.22 Ar adsorption isotherm (87 K) for Na-Sn-Beta-30. 
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4.5     Scanning Electron Microscopy and X-ray Diffraction Characterization Methods 

Scanning electron microscopy (SEM) with Energy Dispersive X‐ray 

Spectroscopy (EDS) measurements were recorded on a LEO 1550 VP FE SEM at an 

electron high tension (EHT) of 15 kV. The crystalline structures of zeolite samples 

were determined from powder X-ray diffraction (XRD) patterns collected using a 

Rigaku Miniflex II diffractometer and Cu K radiation. 

4.6 Infra-Red Spectroscopy 

Deuterated acetonitrile dosing and desorption experiments were performed 

according to the procedure described elsewhere.
25

 A Nicolet Nexus 470 Fourier 

transform  infrared  (FTIR) spectrometer with a Hg-Cd-Te (MCT) detector was used 

to record spectra in 4000-650 cm
-1

 range with a 2 cm
-1 

resolution. Self-supporting 

wafers (10-20 mg cm
-2

) were pressed and sealed in a heatable quartz vacuum cell with 

removable KBr windows. The cell was purged with air (1 cm
3
 s

-1
, Air Liquide, 

breathing grade) while heating to 373 K (0.0167 K s
-1

), where it was held for 12h, 

followed by evacuation at 373 K for  > 2h (< 0.01 Pa dynamic vacuum; oil diffusion 

pump), and cooling to 308 K under dynamic vacuum. CD3CN (Sigma-Aldrich, 99.8% 

D-atoms) was purified by three freeze (77 K), pump, thaw cycles, then dosed to the 

sample at 308 K until the Lewis acid sites were saturated. At this point, the first FTIR 

spectrum in the desorption series was recorded. The cell was evacuated down to 13.3 

Pa, and the second spectrum was recorded. Then, the cell was evacuated under 

dynamic vacuum while heating to 433 K (0.0167 K s
-1

). Concurrently, a series of 

FTIR spectra were recorded (2 min for each spectrum) at 5 minute intervals. The 

resulting spectra were baseline-corrected, and the most illustrative spectra were 

chosen for presentation. The spectra are not normalized by the number of Sn sites. 
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Spectral artifacts known as “interference fringes” were removed using a 

computational method based on digital filtering techniques and Fourier analysis.
26

 

 

 
Figure 4.23 IR spectra of (a) Sn-Beta, (b) Sn-Beta-AW, (c) Sn-Beta-NH3-Cal, (d) Sn-Beta-1Ex, (e) 

Sn-Beta-2Ex, and (f) Sn-Beta-3Ex showing the presence or absence of a broad nitrate ion 

absorption band in the 1300 cm
-1

 -1500 cm
-1

 range
19
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Figure 4.24 Baseline corrected IR spectra with decreasing CD3CN coverage on Sn-Beta-1Ex. 
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Figure 4.25 Baseline corrected IR spectra with decreasing CD3CN coverage on Sn-Beta-2Ex. 
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Figure 4.26 Baseline corrected IR spectra with decreasing CD3CN coverage on Si-Beta-3Ex. 
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Figure 4.27 Baseline corrected IR spectra with decreasing acetonitrile coverage on Na-Sn-Beta-

30. This spectrum was collected after a 2h 773 K vacuum activation. 

 

4.7 
119

Sn Solid-State NMR and Liquid NMR 

Solid-state magic angle spinning nuclear magnetic resonance (MAS-NMR) 

measurements were performed using a Bruker Avance 500MHz spectrometer 

equipped with a 11.7 T magnet and a Bruker 4mm broad band dual channel MAS 

probe. The operating frequencies were 500.2 MHz and 186.5 MHz for 
1
H and 

119
Sn 

nuclei, respectively. Approximately 60-80 mg of powder were packed into 4mm ZrO2 

rotors and spun at 14 kHz for MAS or cross polarization (CP) MAS experiments at 

ambient condition. 
119

Sn{
1
H} CP condition was optimized at radiofrequency pulse 

power of 62.5 kHz  r , where  r is spinning frequency, and spectra were recorded 

using 2 ms contact time. The recycle delay times were 20 sec and 2 sec for 
119

Sn MAS 
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and CPMAS experiments, respectively. Signal averaging over 8,000 scans was 

performed for the CPMAS spectrum of 
119

Sn-Beta dehydrated after NH3 dosing, while 

averaging over 30,000 scans was performed for the CPMAS spectrum of 
119

Sn-Beta 

dehydrated after three Na-exchanges.  

 

 

 
 
Figure 4.28 Expanded chemical shift range in the -400 to -480 ppm region of 

119
Sn MAS Solid 

State NMR spectra of 
119

Sn-Beta after different treatments: (a) dehydration after calcination, (b) 

dehydration after three Na-exchanges and (c) dehydration after NH3 adsorption. 
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Figure 4.29 
119

Sn NMR of three times Na-exchanged 
119

Sn-Beta dehydrated at 397 K for 2h: (a) 

MAS spectrum and (b) CPMAS spectrum with 2ms contact time. 

 

 
 

Figure 4.30 
119

Sn NMR of NH3-dosed
 119

Sn-Beta dehydrated at 397 K for 2h: (a) MAS spectrum 

and (b) CPMAS spectrum with 2ms contact time. 
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Liquid 
13

C Nuclear Magnetic Resonance, NMR, spectra were recorded using a 

Varian INOVA 500 MHz spectrometer equipped with an auto-x pfg broad band 

probe. Carbon chemical shifts are reported relative to the residual solvent signal. 
13

C 

NMR spectra were acquired with 2000 scans. 

4.8 Reaction Procedures 

Reactions with D-glucose (Sigma-Aldrich,  99%) were conducted in 10 ml 

thick-walled glass reactors (VWR) that were heated in a temperature-controlled oil 

bath. Reactions were prepared with a 1:100 Sn:glucose molar ratio using 5.0 g of a 

1% (w/w) glucose solution with approximately 20 mg of catalyst. For reactions 

performed to investigate the effects of addition of NaCl to aqueous glucose reactant 

solution, 0.2 g of NaCl were added per 1.0 g of 1% (w/w) glucose solution. Reactors 

were placed in the oil bath at 353 K and approximately 50 mg aliquots were extracted 

at 10, 20 and 30 minutes. These reaction aliquots were mixed with 50 mg of a 1% 

(w/w) D-mannitol (Sigma-Aldrich, ≥98%) solution as an internal standard for 

quantification, diluted with 0.3 ml of H2O and filtered with a 0.2 m PTFE syringe 

filter. 

Recyclability experiments were performed with Sn-Beta-3Ex reacted with 

glucose in water and methanol under the previously stated reaction conditions (353 K 

for 30 min in a 1% (w/w) with 1:100 Sn:glucose molar ratio) and washed once with 

the solvent used in the reaction. The solids were centrifuged and dried with room 

temperature air. 

Reaction aliquots were analyzed by high performance liquid chromatography 

(HPLC) using an Agilent 1200 system (Agilent) equipped with PDA UV (320 nm) 
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and evaporative light scattering (ELS) detectors. Glucose, fructose, mannose and 

mannitol fractions were separated with a Hi-Plex Ca column (6.5 x 300 mm, 8 µm 

particle size, Agilent) held at 358 K, using ultrapure water as the mobile phase at a 

flow rate of 0.6 mL s
-1

. 

Reactions with labeled 
13

C glucose at the C1 position (Cambridge Isotope 

Laboratories,1-
13

C D-glucose, 98-99%) and deuterium (D) in the C2 position of 

glucose (Cambridge Isotope Laboratories, D-glucose-D2, > 98%) were conducted 

under the same conditions as those with D-glucose. The reaction was ended by 

quenching after 30 minutes. The reaction solution was filtered and rotavaporated to 

separate the solvent from the reactant-product mixture. These recovered solids were 

dissolved in deuterium oxide and analyzed using 
13

C NMR. 

 

4.9 Glucose Conversion and Fructose and Mannose Yields 

Table 4-2 and Table 4-3 of the main text provide glucose conversion and 

fructose and mannose yields at 30 minutes of reaction. The following tables provide 

the same type of data for 10 and 20 minute times of reaction. 
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  10 minutes 20 minutes 

Catalyst Solvent XGluc.(%) YFruc.(%) YMann.(%) XGluc.(%) YFruc.(%) YMann.(%) 

Sn-Beta H2O 1.0 1.0 0.0 3.4 2.9 0.4 

 CH3OH 12.0 4.8 0.0 20.4 9.1 1.8 

Sn-Beta-1Ex. H2O 2.9 0.0 1.0 3.6 0.8 1.6 

 CH3OH 8.9 0.0 2.3 10.6 2.8 3.6 

Sn-Beta-2Ex. H2O 2.2 0.0 0.8 4.9 0.0 2.4 

 CH3OH 7.9 0.0 2.4 10.5 0.0 4.4 

Sn-Beta-3Ex. H2O 4.4 0.0 1.3 5.8 0.0 3.2 

 CH3OH 8.2 0.0 2.7 11.7 0.0 5.0 

Sn-Beta-AW H2O 2.4 0.0 0.0 3.8 2.3 0.0 

 CH3OH 9.9 2.2 2.2 12.1 4.7 2.7 

Na-Sn-Beta-100 H2O 2.8 0.0 1.5 4.1 2.9 1.1 

 CH3OH 9.2 3.2 2.1 14.0 6.3 2.7 

Na-Sn-Beta-60 H2O 1.8 0.0 1.3 4.3 2.5 1.9 

 CH3OH 8.1 2.7 2.7 13.3 6.2 2.7 

Na-Sn-Beta-30 H2O 3.0 0.0 2.2 3.1 0.0 2.9 

 CH3OH 5.1 0.0 2.5 5.1 0.0 3.6 

Sn-Beta-NH3 H2O 0.0 0.0 0.0 2.3 0.0 2.0 

 CH3OH 2.7 0.0 1.4 2.7 0.0 1.5 

Sn-Beta-NH3-Cal H2O 1.7 0.0 0.0 2.8 1.7 0.0 

 CH3OH 11.0 2.5 1.7 14.8 5.0 2.5 

 

Table 4-5 Glucose conversion (X) and fructose and mannose yields (Y) in H2O and CH3OH 

solvents. Reaction conditions: 1% (w/w) glucose solutions, 1:100 metal:glucose ratio, 353 K, 10 

and 20 min. 

 

  10 minutes 20 minutes 

Catalyst Solvent XGluc.(%) YFruc.(%) YMann.(%) XGluc.(%) YFruc.(%) YMann.(%) 

Sn-Beta H2O-NaCl 5.1 1.9 2.1 9.6 3.4 3.2 

Sn-Beta-1Ex. H2O-NaCl 3.5 0.0 3.0 6.3 1.5 4.4 

Sn-Beta-2Ex. H2O-NaCl 4.0 0.0 3.0 5.8 1.4 5.0 

Sn-Beta-3Ex. H2O-NaCl 3.7 0.0 3.6 9.6 0.0 6.4 

 

Table 4-6 Glucose conversion (X) and fructose and mannose yields (Y) with 0.2g NaCl/g H2O. 

Reaction conditions: 1% (w/w) glucose solutions, 1:100 metal:glucose ratio, 353 K, 10 and 20 

min. 
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Chapter 5 : Glucose Conversion into Carboxylic Acids with Sn-Bea and  

SnO2/Si-Beta 

1. Introduction 

Lactic acid is considered as one of the chemical building blocks of food, 

pharmacy, cosmetics and chemical industries,
1
 being its main focus the production of 

biodegradable plastics.
2
 The singularity of having both carboxyl and functional 

groups, facilitates the formation of linear polyesters through intramolecular or self-

esterification. The molecule itself is chiral, having different internal planes of 

symmetry. The polymerization of L-lactic acid, poly-L-lactide (PLLA), is known to 

result in the highest degree of crystallinity, while polymerization of a racemic mixture 

of lactic acid becomes into poly-D,L-lactide (PDLLA) which is amorphous.
3
 High 

degree of crystallinity is required for the applications of polylactic acid. 

The drawbacks affiliated with the biological synthetic route of lactic acid, by 

means of glucose fermentation, has grown recent interest in developing an efficient 

catalytic chemical synthesis route.
4
 The calcium hydroxide used to maintain the 

fermentation broth at neutral pH, together with the post sulfuric acid added to reform 

the acid is not ideal, from an environmental standpoint. Following the biological 

glycolysis pathway, both homogeneous and heterogeneous catalyst have achieved 

high lactic acid yields and selectivities in  aqueous and alcohol solvents, resulting the 

latter in alkyl lactates.
5
 In alkaline media, chemical conversion of carbohydrates to 

lactate salts proceeds at low yields (< 30%), due to the harsh reaction conditions 

(573K).
6
 More efficient homogenous catalyst have been used, such as a dual-cation 

system of Al(III) and Sn(II),
7
 cation Pb(II)

7
 or lanthanide triflates,

8
 resulting in 81%, 

71% and 90% lactic acid yields, respectively. Metal oxides in combination of alkaline 

hydrothermal or superheated water conditions are also active catalysts in the 
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conversion of monosaccharides to lactic acid. A mixture in aluminum oxide and 

zirconium oxide lead to 34% yield of lactic acid under superheated water conditions.
9
 

Higher lactic acid selectivities were seen with platinum supported over carbon, 47%,
10

 

and copper oxide, 59%.
11

 

Zeolite frameworks with isolated Lewis acid centers have shown a unique 

ability in the formation of lactic acid from C3- and C6-sugars.
5
  Sn-Beta has a higher 

methyl lactate yield over Ti-Beta and Zr-Beta at 160ºC, being 43%, 31% and 33%, 

respectively.
12

 Surprisingly, with Sn-Beta a higher lactic acid yield is achieved 

starting from sucrose, 64%, a disaccharide composed of monosaccharides glucose and 

fructose. The overall reaction pathway is believed to be following the one seen in 

Figure 5.1, similarly to the glycolysis pathway.
13

 Firstly, is the isomerization of 

glucose into fructose, by intramolecular hydride shift. Secondly, is the retro-aldol 

reaction of fructose into the two C3-sugars glyceraldehyde and dihydroxyacetone, 

being the rate determining step, which these two can also isomerize by intramolecular 

hydride shift. Then glyceraldehyde dehydrates into pyruvaldehyde. Finally, 

isomerization of these species by intramolecular hydride shift will lead to the 

formation of lactic acid in water and methyl lactate in methanol. Analogously, glucose 

could go through retro-aldol C4-C5 to form vinyl glycolitic acid in water or methyl 

vinyl glycolate in methanol. In addition, fructose dehydration will lead to 5-

hydroxymethylfurfural (HMF). 
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Figure 5.1 Reaction pathway to form vinyl glycolytic acid, lactic acid and HMF. 

  

 The conversion of C3-sugars into lactic acid, in water, or alkyl lactates, in 

alcohol, can be done at much lower temperatures.
14

 At 80ºC full conversion of 

dihydroxyacetone into methyl lactate in methanol and a 90% yield of lactic acid in 

water is obtained with Sn-Beta. Both C3- and C6-sugars lead to lower yields of lactic 

acid in water, which could be emerging from the degradation of the sugars by the 

Brønsted acidity of the carboxylic acid. Protonation of the different intermediates by 

the carboxylic acid will decrease the selectivity of lactic acid.
15,16

 An example of this 
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is pyruvaldehyde, a highly reactive intermediate, whose aldehyde group hydrates in 

water and could go through other molecular transformations,
17

 instead of the 

intramolecular hydride shift to finally form lactic acid.  

 The rate limiting step in the conversion of C3-sugars into lactic acid with Sn-

Beta is suggested to be its dehydration into pyruvaldehyde.
18

 Higher rates are 

observed for the 1,2-hydride shift of pyruvaldehyde to lactic acid or methyl lactate, in 

contrast to the dehydration of glyceraldehyde to pyruvaldehyde. The hydride shift is 

analogous to the one taking place between dihydroxyacetone to glyceraldehyde and 

glucose to fructose. The Lewis acid centers in Sn-Beta have the ability to redistribute 

the oxidation states between among the carbon atoms of the same molecule. Similarly, 

in between the carbon atoms of two distinct molecules, there is an intermolecular 

redistribution of the oxidation states by Meerwein-Ponndorf-Verley aldehyde and 

ketone reduction and Oppenauer alcohol oxidation (MPVO) reactions, as has been 

described in Chapter 1.  

 Conventional zeolites are also active in the conversion of C3-sugars into 

lactate derivatives.
14,19

 Higher reaction temperatures (110-120ºC) and post-synthesis 

treatments are needed with conventional zeolite Y and Beta. The formation of Lewis 

acid sites by steaming the zeolite shifts the Brønsted acid sites to extraframework 

alumina, diminishing the formation of pyruvaldehyde dimethyl acetal and increasing 

the selectivity towards methyl lactate.
14

 Since Brønsted acidity in zeolite Y is not 

active in the 1,2-hydride shift, further acetylation of pyruvaldehyde occurs. Al-Beta 

zeolite with Si/Al ratio of 65 can be treated under steaming conditions at 750ºC for 20 

hours, changing the methyl lactate yield from 3% to 32% with dihydroxyacetone at 

115ºC.
14
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 In this chapter the formation of lactic acid from glucose was studied with Sn-

Beta and extraframework SnO2 deposited on Si-Beta (SnO2/Si-Beta) in both water 

and methanol solvents. The formation of lactic acid was measured over a period of 8 

hours. In addition, 
13

C isotopic labeling in the C1 and C2 position of the 

monosaccharides was monitored by 
13

C NMR to identify the molecular 

rearrangements. While intermediates were identified through these studies, they were 

not added to the carbon balance as these were detected in trace amounts. Since the 

catalysts used were fully characterized in previous chapters, Sn-Beta (Chapter 2, 3 

and 4) and SnO2/Si-Beta (Chapter 3), there physical and chemical properties can be 

seen in those. 

2. Results and Discussion 

2.1 Glucose Conversion and Product Distribution 

The formation of lactic acid required lower glucose to Sn ratio and longer 

reaction times than those seen in previous chapters. This is due to retro-aldol reaction, 

the C-C cleavage in the monosaccharides, which is believed to be the rate limiting 

step.
12

 The glucose conversion and product distribution was measured with a 1% 

(wt/wt) glucose solution in water and methanol at 100ºC and 120ºC with Sn-Beta and 

SnO2/Si-Beta for eight hours. The difference in activity previously seen between the 

two catalysts, Chapter 3, led to the use of different glucose to tin ratios, being c.a. 30 

for Sn-Beta and 15 for SnO2/Si-Beta. Figure 5.2 and Figure 5.3 show the glucose 

reacted per tin atom in the zeolite over the course of eight hours for 100ºC and 120ºC, 

respectively. In all cases an increase in activity was seen at higher temperatures and 

with methanol as a solvent. Sn-Beta exhibits a higher glucose conversion, 

demonstrating the higher Lewis acidity of the isolated Sn sites in the framework. 

Gorte et al.
20

 have shown with adsorbed deuterated acetonitrile in the IR how Sn-Beta 
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has a higher Lewis acid strength in comparison to extraframework SnO2 in Si-Beta. 

The catalytic activity of metal oxides is known to be found at its defect sites.
21

 In this 

case it is hard to compare the strength of the defect site in the metal oxide with the 

“open” site of zeolite Sn-Beta, considered the active site, since the number and 

distribution of these is unknown in each catalyst. In the case of Sn-Beta in methanol, 

full glucose conversion was reached after two hours and one hour, respectively, 

indicating the high reactivity of the isolated tin centers in a non-aqueous solvent. This 

would suggest that some of the Lewis acid sites in Sn-Beta are not completely 

hydrophobic, being susceptible to water attack and consequently deactivation.  

 

Figure 5.2 Glucose reacted per tin atom for 8 hours at 100ºC with Sn-Beta in water (diamond), 

Sn-Beta in methanol (square), SnO2/Si-Beta in water (cross) and SnO2/Si-Beta in methanol 

(triangle). 
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Figure 5.3 Glucose reacted per tin atom for 8 hours at 120ºC with Sn-Beta in water (diamond), 

Sn-Beta in methanol (square), SnO2/Si-Beta in water (cross) and SnO2/Si-Beta in methanol 

(triangle). 

 In Figure 5.4 and Figure 5.5 the product distributions can be seen from a 1% 

glucose (wt/wt) aqueous solution with Sn-Beta at 100ºC and 120ºC. The carbon 

balances were similar to previous results in our group,
22

 with no carboxylic acids 

analyzed. At 110ºC the carbon balance was almost 80% at approximately 35% 

glucose conversion in 90 min with 10% (wt/wt) aqueous glucose solution and 50:1 

glucose to tin ratio.
22

 In this study, comparable results were obtained for 120 min at 

100ºC and 30 min at 120ºC. Mannose (Mann) also reached a maximum yield at 120 

min (9.1%) at 100ºC and 60 min (7.4%) at 120ºC. The disappearance of mannose 

could also be due to the formation of fructose. As it was described in Chapter 2, 

mannose would preferentially isomerize to fructose than epimerize to glucose with 

Sn-Beta. 
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Figure 5.4 Monosaccharides and carboxylic acids distribution from a 1% (wt/wt) glucose solution 

in water with Sn-Beta at 100ºC with glucose to tin ratio of 30. 

 

 The formation of carboxylic acid acids with Sn-Beta in water was seen at both 

temperatures 100ºC and 120ºC (Figure 5.4 and Figure 5.5, respectively) being higher 

for lactic acid (LA) than for vinylglycolic acid (VGA). Lactic acid was formed at 

glucose conversions higher than 34% (for 100ºC), with at least 25% fructose yields, 

proving the formation of lactic acid is related to the presence of fructose in the 

solution. The maximum lactic acid yields were of 8% and 16 % for 100ºC and 120ºC, 

respectively. The carbon to carbon bond formation in aldol-reaction is known to be 

exothermic,
23

 which would be in agreement with our results for the reverse process, 

retro-aldol. However, since we are not in the equilibrium the formation of lactic acid 

seems to be controlled by kinetics. Analogously, vinylglycolic acid yields were higher 

at 120ºC (5%) than at 100ºC (2%). The higher formation of lactic acid was in 

accordance with the simulation studies in Chapter 2, with higher rate constants for the 

fructose sink than the glucose sink. Holm et al.
12

 reported 29% yield of lactic acid at 

160ºC with similar glucose to Sn ratios (c.a. 30:1), but having the reaction vessel 

purged with argon. 
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Figure 5.5 Monosaccharides and carboxylic acids distribution from a 1% (wt/wt) glucose solution 

in water with Sn-Beta at 120ºC with glucose to tin ratio of 30. 

 

With Sn-Beta the solvent was changed to methanol, leading to higher glucose 

conversions and carboxylic acid yields. The fructose analyzed was a mixture of 

fructose and methyl fructoside, which reached maximum yields at 30 min for 100ºC 

(27%) and 120ºC (9%). The maximum methyl lactate yields were of 8% and 22% for 

100ºC and 120ºC, respectively. These results were much lower than those reported by 

Holm et al.,
12

 with 43% methyl lactate yields at 160ºC. Higher yields of methyl 

vinylglycolate were formed in methanol than in water, reaching 6% at 120ºC. As in 

water, the formation of carboxylates is greatly influenced by the temperature of the 

reaction, being higher as the temperature is increased. It has been suggested that alkyl 

lactates are much more stable than carboxylic acids, having no Brønsted acidity that 

could lead to the dehydration/hydration of other species,
12

 such as HMF. The product 

distribution was approximately the same after 240 min, suggesting the deactivation of 

the Lewis acid sites in Sn-Beta or the deposition of different organic products in the 

zeolite pores blocking the intra-diffusion of the molecules.  
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Figure 5.6 Monosaccharides and carboxylic acids distribution from a 1% (wt/wt) glucose solution 

in methanol with Sn-Beta at 100ºC with glucose to tin ratio of 30. 

 

 

Figure 5.7 Monosaccharides and carboxylic acids distribution from a 1% (wt/wt) glucose solution 

in methanol with Sn-Beta at 120ºC with glucose to tin ratio of 30. 

 The conversion of 1% (wt/wt) glucose in water over SnO2/Si-Beta formed 

fructose as the primary product. SnO2/Si-Beta can isomerize glucose to fructose 

through the base enolate intermediate.
24

 SnO2 needs to be located within the zeolite 

micropores to provide a hydrophobic environment to which water will not deactivate 

the Lewis acid sites. Glucose will then isomerize into fructose inside of the pores. 
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However, the product yields were quite low since the clusters are not as active as the 

isolated framework Sn sites in Sn-Beta, as it can be seen in Figure 5.8 and Figure 5.9. 

Also, these SnO2 clusters occupy part of the micropore volume restricting the 

diffusion of glucose inside of the zeolite, as apparent activation energies were half of 

those with the homogenous catalyst sodium hydroxide.
24

 Increasing the temperature 

of the reaction from 100ºC to 120ºC raised the fructose yield from 10% to 30%, 

resulting in traces of lactic acid. Therefore, lactic acid could only be formed during 

much longer reaction times than eight hours at 120ºC.  

 

Figure 5.8 Monosaccharides and carboxylic acids distribution from a 1% (wt/wt) glucose solution 

in water with SnO2/Si-Beta at 100ºC with glucose to tin ratio of 15. 
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Figure 5.9 Monosaccharides and carboxylic acids distribution from a 1% (wt/wt) glucose solution 

in water with SnO2/Si-Beta at 120ºC with glucose to tin ratio of 15. 

  

 In methanol SnO2/Si-Beta was much more active in the isomerization of 

glucose and retro-aldol reactions. The isomerization mechanism of glucose to fructose 

with SnO2/Si-Beta in methanol is analogous to the one in water, base enolate 

intermediate.
24

 In this case, SnO2 is active in both the inside and outside of the 

micropores, since methanol does not seem to inhibit the active sites of SnO2 as water 

does. This was reflected in the higher glucose conversions, reaching 57% and 79% at 

100ºC and 120ºC, respectively, after 480 minutes.  
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Figure 5.10 Monosaccharides and carboxylic acids distribution from a 1% (wt/wt) glucose 

solution in methanol with SnO2/Si-Beta at 100ºC with glucose to tin ratio of 15. 

 

 The formation of carboxylates from a 1% (wt/wt) glucose solution in methanol 

confirms that SnO2/Si-Beta is also active in the retro-aldol reaction of both glucose 

and fructose. The raise in temperature does also increase formation of carboxylates 

with SnO2/Si-Beta, with methyl lactate and methyl vinylglycolate yields of 8% and 

2% at 100ºC and 11% and 2% at 120ºC, respectively. This could also be in agreement 

with the retro-aldol reaction being the rate-limiting step, although further rate analysis 

among the different intermediates would be required to confirm these findings. When 

these results are compared with Sn-Beta in water, the product distribution seems quite 

similar at equal glucose conversion. With Sn-Beta in water, at 74% glucose 

conversion, 6% and 2% yields of lactic acid and vinylglycolic acid, respectively, were 

obtained after 60 minutes at 120ºC, with a carbon balance of 71%. Similarly, with 

SnO2/Si-Beta in methanol, at 77% glucose conversion, 9% and 2% yields of methyl 

lactate and methyl vinylglycolate, respectively, were obtained after 360 min at 120ºC, 

with a carbon balance of 67%. Therefore, the SnO2 in Si-Beta does not seem to show 
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a change in the product distribution in comparison to Sn-Beta, only a lower activity in 

the synthesis of carboxylic acids. 

 

Figure 5.11 Monosaccharides and carboxylic acids distribution from a 1% (wt/wt) glucose 

solution in methanol with SnO2/Si-Beta at 120ºC with glucose to tin ratio of 15. 

 

2.2 Carboxylate Formation Mechanism 

Since the product distribution is quite similar for both catalysts, Sn-Beta and 

SnO2/Si-Beta, the molecular mechanism of the carboxylates formation was studied 

using 
13

C as an isotopic tracer. Starting from 
13

C1-glucose and 
13

C2-fructose, 
13

C 

NMR was used to identify some of the molecular transformations occurring along the 

pathway described in Figure 5.1. The reaction conditions were similar to the ones 

seen in the previous section, with the exception of the reaction time, which was 

approximated to reach 70% conversion. This study was only performed in the cases of 

Sn-Beta in water, Sn-Beta in methanol and SnO2/Si-Beta in methanol. SnO2/Si-Beta 

in water was not analyzed due to the low activity at 100ºC and 120ºC. 

The 
13

C NMR spectra of the different products in solution can be seen in the 

figures below. In Figure 5.12 and Figure 5.13 the 
13

C NMR spectra show a high 
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number of resonance bands that can be related to the 
13

C labeling of different 

molecules. In the following figures the chemical shifts were focused on the plausible 

intermediates suggested by Holm et al.,
12

 which were not identified by High 

Performance Liquid Chromatography (HPLC). In addition, other chemical shifts 

appear that were not identified. This coincides with the low carbon balances seen in 

the previous experiments. 

 

Figure 5.12 
13

C NMR spectra of product mixture using 
13

C1-glucose with (a) SnO2/Si-Beta in 

methanol, (b) Sn-Beta in methanol and (c) Sn-Beta in water. Reaction conditions: 1% (wt/wt) 

monosaccharide with a monosacc/Sn ratio of 30 and 15 for Sn-Beta and SnO2/Si-Beta, 

respectively. 
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Figure 5.13 
13

C NMR spectra of product mixture using 
13

C2-fructose with (a) SnO2/Si-Beta in 

methanol, (b) Sn-Beta in methanol and (c) Sn-Beta in water. Reaction conditions: 1% (wt/wt) 

monosaccharide with a monosacc/Sn ratio of 30 and 15 for Sn-Beta and SnO2/Si-Beta, 

respectively. 

 In Figure 5.14 the presence of methyl fructoside can be observed, formed with 

SnO2/Si-Beta and Sn-Beta in methanol as a solvent. The resonances  = 57.7, 59.6 

and 60.8 ppm are for the C1 position of -pyranose, -furanose and -pyranose, 

respectively, of methyl fructoside, which were synthesized from the starting 
13

C1-

glucose solution. Similarly, resonances  = 108.2, 103.7 and 100.7 ppm are for the C1 

position of -pyranose, -furanose and -pyranose, respectively, of methyl fructoside, 

which were synthesized from the starting 
13

C2-fructose solution. In the case of Sn-

Beta in water, fructose was not methylated due to the absence of methanol. Methyl 

glucoside was not observed in any of the samples. 
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Figure 5.14 
13

C NMR spectra of (a) methyl fructoside, (b) product mixture using 
13

C1-glucose 

with   SnO2/Si-Beta in methanol , (c) product mixture using 
13

C1-glucose with Sn-Beta in 

methanol, (d) product mixture using 
13

C1-glucose with Sn-Beta in water, (e) methyl fructoside, (f) 

product mixture using 
13

C2-fructose with SnO2/Si-Beta in methanol, (g) product mixture using 
13

C2-fructose with Sn-Beta in methanol and (h) product mixture using 
13

C2-fructose with Sn-

Beta in water. All product mixtures were obtained from the following reaction conditions: 1% 

(wt/wt) monosaccharide with a monosacc/Sn ratio of 30 and 15 for Sn-Beta and SnO2/Si-Beta, 

respectively. 

 

 In Figure 5.15 the presence of dihydroxyacetone in solution is studied. The 

terminal hydroxyls at  = 64.8 ppm seem to appear from the starting 
13

C1 glucose 

solution, while no ketone at  = 212.1 ppm was observed from the starting 
13

C2 

fructose solution. The appearance of the terminal hydroxyl in the 
13

C NMR spectrum 

does not give sufficient evidence that dihydroxyacetone was present in solution. This 

suggests that either dihydroxyacetone was not formed as an intermediate or that after 

retro-aldol reaction of fructose, dihydroxyacetone rapidly isomerizes into 

glyceraldehyde.  
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Figure 5.15 
13

C NMR spectra of (a) dihydroxyacetone, (b) product mixture using 
13

C1-glucose 

with   SnO2/Si-Beta in methanol , (c) product mixture using 
13

C1-glucose with Sn-Beta in 

methanol, (d) product mixture using 
13

C1-glucose with Sn-Beta in water, (e) dihydroxyacetone, 

(f) product mixture using 
13

C2-fructose with SnO2/Si-Beta in methanol, (g) product mixture using 
13

C2-fructose with Sn-Beta in methanol and (h) product mixture using 
13

C2-fructose with Sn-

Beta in water. All product mixtures were obtained from the following reaction conditions: 1% 

(wt/wt) monosaccharide with a monosacc/Sn ratio of 30 and 15 for Sn-Beta and SnO2/Si-Beta, 

respectively. 

 

 Figure 5.16 confirmed the presence of glyceraldehyde as an intermediate with 

SnO2/Si-Beta and Sn-Beta in methanol, and Sn-Beta in water. The resonance at  = 

89.6 ppm is for the aldehyde carbon in glyceraldehyde, which was synthesized from 

starting 
13

C1-glucose solution. Aldehydes can be hydrated in solution, leading to 

lower chemical shifts in the 
13

C NMR spectrum (an aldehyde has a chemical shift 

between 210-220 ppm). The resonance at  = 74.1 ppm is for the hydroxyl at the C2 

in glyceraldehyde, which was synthesized from starting 
13

C2-fructose solution. These 

results support the retro-aldol reaction from fructose. However, thermodynamically 

the formation of dihydroxyacetone is favored over glyceraldehyde.
25–27

 Similarly to 

the intramolecular hydride shift from glucose to fructose, dihydroxyacetone can 

isomerize into glyceraldehyde with Sn-Beta,
14

 and vice versa. Assary et al.
28

 

calculated the activation energies for the isomerization of glyceraldehyde to 
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dihydroxyacetone, being 13.8 kcal/mol for the “open” site and 23.3 kcal/mol for the 

“closed” site. These results were obtained by the same authors that calculated the 

glucose isomerization into fructose with the open site of Sn-Beta and one silanol 

group, being 22.1 kcal/mol. The presence of glyceraldehyde over dihydroxyacetone 

might be explained by an unknown secondary reaction converting the 

dihydroxyacetone. 

 

Figure 5.16 
13

C NMR spectra of (a) glyceraldehyde, (b) product mixture using 
13

C1-glucose with   

SnO2/Si-Beta in methanol , (c) product mixture using 
13

C1-glucose with Sn-Beta in methanol, (d) 

product mixture using 
13

C1-glucose with Sn-Beta in water, (e) glyceraldehyde, (f) product 

mixture using 
13

C2-fructose with SnO2/Si-Beta in methanol, (g) product mixture using 
13

C2-

fructose with Sn-Beta in methanol and (h) product mixture using 
13

C2-fructose with Sn-Beta in 

water. All product mixtures were obtained from the following reaction conditions: 1% (wt/wt) 

monosaccharide with a monosacc/Sn ratio of 30 and 15 for Sn-Beta and SnO2/Si-Beta, 

respectively. 

 Pyruvaldehyde was present in solution with SnO2/Si-Beta and Sn-Beta in 

methanol, and Sn-Beta in water as it can be seen in the 
13

C NMR spectra of Figure 

5.17. The methyl group of pyruvaldehyde seemed to be present in all cases as the 

resonance at  = 24.4 ppm was seen from the starting 
13

C1-glucose solution. Also, the 

hydrated form of the ketone was present by the resonance at  = 89.5 ppm from the 

starting 
13

C2-fructose solution. The intensities of the resonance bands of 

pyruvaldehyde in Figure 5.17 seem lower than the resonance bands of glyceraldehyde 



171 

 

 

in Figure 5.16. H-USY-6 zeolite can also isomerize triose sugars glyceraldehyde and 

dihydroxyacetone into lactic acid and methyl lactate, being the dehydration of 

glyceraldehyde to pyruvaldehyde the rate limiting step.
18

 This could also be true for 

Sn-Beta, but further rate analysis would be needed with Sn-Beta to confirm that the 

dehydration of glyceraldehyde to pyruvaldehyde is also the rate limiting step in 

conversion of triose sugars into lactic acid and methyl lactate.  

 

Figure 5.17 
13

C NMR spectra of (a) pyruvaldehyde, (b) product mixture using 
13

C1-glucose with   

SnO2/Si-Beta in methanol , (c) product mixture using 
13

C1-glucose with Sn-Beta in methanol, (d) 

product mixture using 
13

C1-glucose with Sn-Beta in water, (e) pyruvaldehyde, (f) product 

mixture using 
13

C2-fructose with SnO2/Si-Beta in methanol, (g) product mixture using 
13

C2-

fructose with Sn-Beta in methanol and (h) product mixture using 
13

C2-fructose with Sn-Beta in 

water. All product mixtures were obtained from the following reaction conditions: 1% (wt/wt) 

monosaccharide with a monosacc/Sn ratio of 30 and 15 for Sn-Beta and SnO2/Si-Beta, 

respectively. 

 

 Figure 5.18 confirms the presence of lactic acid with Sn-Beta in water, methyl 

lactate with SnO2/Si-Beta and Sn-Beta in methanol. The 
13

C NMR spectra shows the 

methyl group ( = 19.1 ppm) of lactic acid and methyl lactate from the starting 
13

C1-

glucose solution. The starting 
13

C2-fructose solution results in the isotopic labeling of 

the carbon bonded to the hydroxyl group ( = 68.5 ppm) in lactic acid and methyl 

lactate.  
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Figure 5.18 
13

C NMR spectra of (a) lactic acid, (b) product mixture using 
13

C1-glucose with   

SnO2/Si-Beta in methanol , (c) product mixture using 
13

C1-glucose with Sn-Beta in methanol, (d) 

product mixture using 
13

C1-glucose with Sn-Beta in water, (e) lactic acid, (f) product mixture 

using 
13

C2-fructose with SnO2/Si-Beta in methanol, (g) product mixture using 
13

C2-fructose with 

Sn-Beta in methanol and (h) product mixture using 
13

C2-fructose with Sn-Beta in water. All 

product mixtures were obtained from the following reaction conditions: 1% (wt/wt) 

monosaccharide with a monosacc/Sn ratio of 30 and 15 for Sn-Beta and SnO2/Si-Beta, 

respectively. 

 

The previous 
13

C NMR spectra allow us to infer that the two carbons from 

starting glucose backbone do stay together, along the reaction pathway leading for the 

synthesis of lactic acid with Sn-Beta and SnO2/Si-Beta, as it can be seen in Figure 

5.19. The C1 in glucose is reduced from an aldehyde to a methyl as it was confirmed 

by the formation of a methyl group in pyruvaldehyde and lactic acid. The C2 

hydroxyl in glucose to lactic acid is oxidized to a ketone, during fructose and 

dihydroxyacetone, and later reduced upon the formation of lactic acid. This 

mechanism is analogous to  glycolysis.
13
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Figure 5.19  Plausible mechanism for the synthesis of lactic acid with Sn-Beta and SnO2/Si-Beta. 

 

In contrast to the synthesis of lactic acid with Sn-Beta and SnO2/Si-Beta, two 

different vinylglycolic acid molecules are present in solution with both Sn-Beta and 

SnO2/Si-Beta catalysts, as it can be seen in Figure 5.20 and Figure 5.21. The starting 

13
C1-glucose solution resulted in the different labeling of two vinylglycolic acid 

molecules in water or methyl vinylglycolate molecules in methanol, having the 

isotopic labeling in the methylene ( = 118.1 ppm, Figure 5.20) and in the carboxylate 
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( = 174.2 ppm, Figure 5.21) of vinylglycolic acid. Similarly, the starting 
13

C2-

fructose solution formed two different vinylglycolic acid molecules, having the 

isotopic labeling in the methine ( = 133.6 ppm, Figure 5.20) and in the hydroxyl 

carbon ( = 71.5 ppm, Figure 5.21).  

 

Figure 5.20 
13

C NMR spectra of (a) methyl vinylglycolate, (b) product mixture using 
13

C1-glucose 

with SnO2/Si-Beta in methanol , (c) product mixture using 
13

C1-glucose with Sn-Beta in 

methanol, (d) product mixture using 
13

C1-glucose with Sn-Beta in water, (e) methyl 

vinylglycolate, (f) product mixture using 
13

C2-fructose with SnO2/Si-Beta in methanol, (g) 

product mixture using 
13

C2-fructose with Sn-Beta in methanol and (h) product mixture using 
13

C2-fructose with Sn-Beta in water. All product mixtures were obtained from the following 

reaction conditions: 1% (wt/wt) monosaccharide with a monosacc/Sn ratio of 30 and 15 for Sn-

Beta and SnO2/Si-Beta, respectively. 
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Figure 5.21 
13

C NMR spectra of (a) methyl vinylglycolate, (b) product mixture using 
13

C1-glucose 

with SnO2/Si-Beta in methanol , (c) product mixture using 
13

C1-glucose with Sn-Beta in 

methanol, (d) product mixture using 
13

C1-glucose with Sn-Beta in water, (e) methyl 

vinylglycolate, (f) product mixture using 
13

C2-fructose with SnO2/Si-Beta in methanol, (g) 

product mixture using 
13

C2-fructose with Sn-Beta in methanol and (h) product mixture using 
13

C2-fructose with Sn-Beta in water. All product mixtures were obtained from the following 

reaction conditions: 1% (wt/wt) monosaccharide with a monosacc/Sn ratio of 30 and 15 for Sn-

Beta and SnO2/Si-Beta, respectively. 

The detection of erythrose and 2-oxobut-3-enal (Figure 5.1) could aid in 

reasoning the mechanistic pathway leading to the formation of vinylglycolic acid, but 

its low amount made it difficult to identify the intermediates in 
13

C NMR. A plausible 

explanation for the two molecules could be explained in Figure 5.22. Similarly to 

lactic acid, glucose in its open form could go through C4-C5 cleavage to form 

erythrose and consequently vinylglycolic acid. On the other hand, redistribution in the 

oxidation states of erythrose could also shift the aldehyde to the carbon atom in the 

opposite end of the carbon skeleton (Figure 5.22) and consequently form 

vinylglycolic acid. 
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Figure 5.22 Plausible mechanism for the synthesis of vinylglycolic acid with Sn-Beta or SnO2/Si-

Beta. 

 After analyzing the formation of the two main carboxylic acids there were 

other secondary products observed in solution. One of them was 5-

(Hydroxymethyl)furfural, HMF.  Both the C1 (= 180.4 ppm) and C2 ( = 151.7 

ppm) of mannose were observed from the starting 
13

C1-glucose and 
13

C2-fructose 

solutions, respectively, with both Sn-Beta and SnO2/Si-Beta, as it can be seen in 

Figure 5.23. 
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Figure 5.23 
13

C NMR spectra of (a) HMF, (b) product mixture using 
13

C1-glucose with SnO2/Si-

Beta in methanol , (c) product mixture using 
13

C1-glucose with Sn-Beta in methanol, (d) product 

mixture using 
13

C1-glucose with Sn-Beta in water, (e) HMF, (f) product mixture using 
13

C2-

fructose with SnO2/Si-Beta in methanol, (g) product mixture using 
13

C2-fructose with Sn-Beta in 

methanol and (h) product mixture using 
13

C2-fructose with Sn-Beta in water. All product 

mixtures were obtained from the following reaction conditions: 1% (wt/wt) monosaccharide with 

a monosacc/Sn ratio of 30 and 15 for Sn-Beta and SnO2/Si-Beta, respectively. 

 

The low carbon balances seen with Sn-Beta and SnO2/Si-Beta reflects the 

formation of byproducts which have not been quantified. One of these products can be 

seen in Figure 5.24b. This product was separated by HPLC and resulted in a 

molecular weight of 134 g/mol. This molecule has similar 
13

C NMR spectra as 2-

deoxy-d-ribose (Figure 5.24a), with the same molecular weight. This 2-deoxy-d-

ribose isomer (C5O4H10) and other similar molecules were present in all of the 
13

C 

NMR spectra previously discussed. Holm et al,
18

 reported the formation of levulinic 

acid and trace amounts of other products in solution such as formaldehyde, 

glycolaldehyde, glycolic acid and furfural derivatives. Levulinic acid, formaldehyde 

and furfural derivatives were also seen in this study by 
1
H NMR analysis, as well as 

other non-identified resonance bands for saturated alkanes (R-H, 1-2ppm). Therefore, 

Sn-Beta seems to be doing the reactions seen in the formation of lactic acid 
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(intramolecular hydride shift, retro-aldol and dehydration) to other parts of the carbon 

backbone that lead to different products. 

 

Figure 5.24 
13

C NMR spectra (a) 2-deoxy-d-ribose (b) unknown product separated with HPLC, 

having a molecular weight of 134 g/mol. 

3. Conclusion 

Framework Sn centers within the hydrophobic pores of zeolite beta, Sn-Beta 

and extraframework SnO2 clusters deposited on zeolite beta, SnO2/Si-Beta, are active 

in the glucose and fructose retro-aldol reactions that lead to the formation of 

vinylglycolic acid and lactic acid, respectively. Sn-Beta has a superior activity over 

SnO2/Si-Beta, leading to higher carboxylic acid yields. The activity in aqueous 

solvent is lower than in methanol, resulting in trace amounts of lactic acid with 

SnO2/Si-Beta in water. However, in methanol the SnO2 clusters deposited on the 

exterior surface of zeolite beta are active and catalyze the retro-aldol reactions. Lactic 
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acid and vinylglycolic acid are formed with SnO2/Si-Beta in an analogous 

mechanistic pathway as with Sn-Beta, without carbon rearrangement. 

4. Experimental Procedure 

4.1 Synthesis of Sn-Beta and SnO2/Si-Beta 

The synthesis of Sn-Beta and SnO2/Si-Beta was done following the procedure 

in Chapter 3. 

4.2 Reaction Conditions 

Reactions with D-glucose (Sigma-Aldrich,  99%) were conducted in 10 ml 

thick-walled glass reactors (VWR) that were heated in a temperature-controlled oil 

bath. Reactions were prepared with a 1:30 and 1:15 Sn:glucose molar ratio with Sn-

Beta and SnO2/Si-Beta, using 5.0 g of a 1% (w/w) glucose solution with 

approximately 20 mg of catalyst. Reactors were placed in the oil bath at 353 K and 

approximately 50 mg were extracted at different times. These aliquots were mixed 

with deuterium oxide (D2O, Cambridge Isotope Laboratories, 98-99%). The samples 

were then  analyzed with WET (
1
H) NMR analysis with previous glucose, fructose, 

mannose, lactic acid and methyl vinylglycolate calibration, using a Varian INOVA 

400 MHz spectrometer equipped with a multinuclear autotune acquired with T1 10 

seconds and 128 scans. 

Reactions with labeled 
13

C glucose at the C1 position (Cambridge Isotope 

Laboratories,1-
13

C D-glucose, 98-99%)  and 
13

C fructose at the C2 position of 

fructose (Cambridge Isotope Laboratories,2-
13

C D-fructose, 98-99%) were conducted 

under the same conditions as those with D-glucose. The reaction was ended 

differently for each, estimating for a 70% conversion. The reaction solution was 

filtered and rotavaporated to separate the solvent from the reactant-product mixture. 
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These recovered solids were redissolved in deuterium oxide and analyzed using 
13

C 

NMR. 
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Chapter 6 : Summary and Future Direction 

1. Conclusion 

In this thesis, framework and extraframework tin sites in zeolite Beta 

catalyzing the reaction of glucose are studied. With Sn-Beta (and to a great extent Ti-

Beta), it is shown that the glucose isomerization into fructose mechanism is very 

similar to that of the metalloenzymes D-xylose isomerase. Evidence is provided to 

conclude that the glucose partitions into the zeolite in the cyclic form. In the presence 

of Sn (or Ti), direct NMR and IR evidence of the acyclic fructose are observed. 

Acyclic glucose must have first been bound to the Lewis acid center, prior to being 

isomerized to obtain the acyclic fructose. The isomerization is occurring via a Lewis 

acid-mediated, intramolecular hydride transfer mechanism. Experimental results 

(kinetic isotope effects) corroborate the conclusion that the rate determining step is 

the intramolecular hydride transfer and that the “open” site is likely the active site 

responsible for isomerization activity. The “open” and “close” sites seem to reach an 

equilibrium distribution upon calcination. The mannose formed with Sn-Beta seems 

to be isomerizing from fructose and not from glucose.  

 The basic sites on extraframework SnO2 domains catalyze the glucose 

isomerization into fructose, via the abstraction of protons at C-2 carbon atoms to form 

enolate intermediates. In aqueous environment, extraframework Sn species appear 

only to be reactive when they are confined in the hydrophobic zeolite Beta channels 

(SnO2/Si-Beta); however, at the external zeolite crystal surfaces (SnO2/Si-Beta-E) and 

on amorphous supports (SnO2/SiO2) water does seem to inhibit the isomerization of 

glucose into fructose. In methanol, SnO2 domains are able to catalyze glucose 

isomerization irrespective of their location, within or outside of the hydrophobic 

zeolite Beta pores, indicating that methanol does not inhibit the base-catalyzed 
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isomerization on SnO2. These findings can provide sufficient evidence for the type of 

Sn site in zeolite Beta, framework or extraframework, without the use of 
119

Sn Solid-

State NMR. 

The proton containing partially hydrolyzed Sn site in zeolite beta, 

characterized by an IR band at 2315 cm
-1

 from adsorbed CD3CN and a 
119

Sn NMR 

resonance at -423 ppm in the dehydrated state (denoted as the open site) is the active 

site involved in the isomerization of glucose into fructose via a Lewis-acid mediated 

hydride-shift mechanism; whereas a sodium containing open site analog, 

characterized by an IR band at 2280 cm
-1 

adsorbed CD3CN and a 
119

Sn NMR 

resonance at -419 ppm in the dehydrate state, is the active site in the epimerization of 

glucose into mannose via a 1, 2 intramolecular carbon shift.   The sodium cation can 

be introduced into the active site of the zeolite, either by ion exchange of Sn-Beta or 

by incorporation of low amounts of sodium into the synthesis gel, with both methods 

resulting in samples that give higher epimerization selectivity relative to Sn-Beta. 

Acid wash of sodium containing materials gives nearly full recovery of initial activity 

of the parent Sn-Beta, showing that the alterations to the tin site by the sodium ion are 

reversible. The addition of NaCl to aqueous reaction solutions also enhanced the 

selectivity towards epimerization of glucose into mannose. These results, in 

combination with reusability studies in water and methanol, support the finding that 

the sodium cation is more prone to decationize in water than in methanol under 

reaction conditions. 

The formation of lactic acid and vinylglycolic acid from glucose can be 

catalyzed by framework Sn centers within the hydrophobic pores of zeolite beta, Sn-

Beta, and/or extraframework SnO2 clusters deposited on zeolite beta, SnO2/Si-Beta. 

Sn-Beta has a superior activity over SnO2/Si-Beta, leading to higher carboxylic acid 
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yields. The activity in aqueous solvent is lower than in methanol, resulting in trace 

amounts of lactic acid with SnO2/Si-Beta in water. However, in methanol the SnO2 

clusters deposited on the exterior surface of zeolite beta are active and catalyze the 

retro-aldol reactions. Lactic acid and vinylglycolic acid are formed with SnO2/Si-Beta 

in an analogous mechanistic pathway as with Sn-Beta, without carbon rearrangement. 

The different framework and extraframework Sn sites are fully characterized 

and we know which site will isomerize or epimerize glucose into fructose or mannose, 

respectively. However, it is unknown why do each of these Sn sites choose to follow 

such different mechanistic pathway. Therefore, further research to solve in detail the 

interaction of the hexoses with the active sites could elucidate the reason for these 

mechanisms. 

2. Future Work 

2.1 Sn-Beta Post-Treatment 

2.1.1 Sn-Beta SDA Exchange 

Zeolite post-treatment has been known to alter and condition the activity and 

selectivity of a catalyst, providing unique chemical and physical properties.
1
 Organic 

molecules are used in the synthesis of zeolites as stucture-directing agents (SDA) or 

templates. These molecules are within the zeolite micropores after their synthesis.  To 

remove these organics calcination is commonly employed, leaving behind an organic-

free zeolite able to diffuse orther molecules, such as reactants. However, severe 

calcination conditions can change or modify the features desired in the synthesis of 

molecular sieves. Therefore, the removal of the organics has been investigated 

through other procedures. Mineral and organic acids have been used to remove by 

extraction the SDA present in the micropores after zeolite synthesis.
2,3

 The amount of 
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SDA removed by this treatment is reliant in its size and strength of interaction with 

the molecular sieve framework, correlating well with the temperature at which the 

SDA combusts in thermogravimetric analyses experiments.
2
  

Throughout Chapter 2 it was discussed how upon calcination the “open” and 

“closed” sites of Sn-Beta might equilibrate within the high temperature conditions 

(400-600ºC). To hinder the changes that might uccur during calcination, the SDA in 

Sn-Beta was removed by extraction with glacial acetic acid (water-free acetic acid) at 

80ºC for 24 hours. This was then tested with 1% glucose (wt/wt) at 100ºC for 30 

minutes at a Sn:glucose ratio of 1:50, forming only mannose, Figure 6.1 HAcEx. This 

same reaction was performed with 
13

C in the C1 position of glucose, confirming an 

1,2 intramolecular carbon shift, as the 
13

C NMR spectrum displayed the resonance 

bands at  = 70.5 and 71.1 ppm, corresponding to the C2-positions of the  and  

pyranose forms of mannose, respectively. The catalyst seems to behave similarly to 

the sodium exchanged Sn-Beta in methanol solvent (Chapter 4), were mannose was 

selectively formed over fructose through a 1,2 intramolecular carbon shift. These 

results led to think that not all of the SDA (tetraethylamonium hydroxide, TEAOH) 

had been removed from Sn-Beta after acetic acid extraction, having some attached to 

the “open” site. Similarly to sodium exchanged Sn-Beta, tetraethylammonium cation 

(TEA
+
) could be counterbalancing the neighbouring Si-O

-
  in the “open” site. 

Sn-Beta was exchanged with ammonium cations tetraethylammonium (TEA
+
) 

and tetramethylammonium (TMA
+
) in hydroxide solution, TEAOH and TMAOH, 

respectively. These exchanged materials were then tested with 1% (wt/wt) glucose in 

water and methanol solvent at 100ºC, as it can be seen in Figure 6.1 and Figure 6.2. 

Comparing these exchanged materials with Sn-Beta extracted with acetic acid, a 



187 

 

 

resemblance is seen in their activity and selectivity. In aqueous environment, glucose 

conversion does not surpass 17%, obtaining  after 2 hours almost aproximately 11% 

mannose yields in all cases. Sn-Beta exchanged with TMA
+
 seems to have a higher 

initial activity than exchanged with TEA
+
, implying the possibility of some steric 

hindrance with bigger ammonium cations. Only a small ammount of fructose is 

observed after Sn-Beta extracted with acetic acid was used in water solvent. Acetic 

acid from the extraction treatment could be remaining in the zeolite, catalyzing the 

isomerization into fructose. In solvent methanol the behaviour is also similar in all 

three cases, with a higher selectivity towards fructose in comparison to water. 

Methanol might be interacting in a different way with the active site, promoting the 

isomerization into fructose. 

 

Figure 6.1 Glucose conversion and fructose and mannose yields with Sn-Beta extracted with 

acetic acid (HAcEx), Sn-Beta exchanged with TEAOH (TEAOHEx) and Sn-Beta exchanged with 

TMAOH (TMAOHEx). Reactions conditions: 1% (wt/wt) in water, 100ºC and glucose:Sn ratio of 

50:1.  

2 
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Figure 6.2 Glucose conversion and fructose and mannose yields with Sn-Beta extracted with 

acetic acid (HAcEx), Sn-Beta exchanged with TEAOH (TEAOHEx) and Sn-Beta exchanged with 

TMAOH (TMAOHEx). Reactions conditions: 1% (wt/wt) in water, 100ºC and glucose:Sn ratio of 

50:1. The TMAOH and TEAOH exchange was performed under same conditions as those from 

Corma et al.
4
  

 

Figure 6.3 
13

C NMR spectra of product mixture from a 1% (wt/wt) 
13

C1-glucose in water at 

100ºC after 30 minutes using Sn-Beta extracted with acetic acid at a glucose:Sn ratio of 50:1. 
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 These preliminary results could allow us to gain a precise understanding of the 

active site in Sn-Beta. The results suggest that after extraction with acetic acid, Sn-

Beta has the TEA
+
 cation bonded through charge-balancing interactions to the “open” 

site. Jones et al.
2
 reported that for the cases of borosilicates, aluminosilicates and 

zincosilicates, only organics that can combust in thermogravimetric analysis (TGA) at 

temperatures below 400ºC can be removed by solvent extraction. If all Sn sites were 

to have TEA
+
, TGA analysis of extracted Sn-Beta should confirm a minimum weight 

loss correspondent to those sites. In addition, IR with adsorbed acetonitrile could tell 

us the Lewis acid encountered in the active site of Sn-Beta.  

 Releasing the TEA
+
 from the active site of Sn-Beta without calcination could 

lead to a different activity. The as-synthesized Sn-Beta could be initially formed 

without “closed” sites and upon calcination an “open” site could be “closing”. This 

idea could only be tested by the removal of the TEA
+
 cation from the active sites of 

Sn-Beta. After acetic acid extraction of Sn-Beta, sulfuric acid (H2SO4) wash was 

performed. This did not change the activity, as it did with the sodium exchanged 

materials, forming only mannose. Other possibilities could be by sodium exchange of 

Sn-Beta extracted with acetic acid and then Na
+
 de-cationation with an acid wash.

  

2.1.2 Surface Modification and Hierarchical Sn-Beta 

In the presence of water the catalytic activity of a Lewis acid is diminished.
5
 In 

Chapters 3-5, it can be seen that the glucose conversion with Sn-Beta is higher in 

methanol than in water. This could be due to the Sn site distribution, where the Sn 

sites in the mouth pore and at the external surfaces are hindered in the presence of 



190 

 

 

water, owing to their lower hydrophobicity. To increase the activity of these sites in 

water a surface treatment could be done to enhance the hydrophobic environment of 

these tin sites. Surface silylation can increase the hydrophobicity without significantly 

reducing the acid site density in conventional zeolites.
1,6–8

 The addition of a 

hydrophobic layer on Sn-Beta could enhance the activity of Sn-Beta without the 

formation of the methylated products observed in methanol solvent. The most 

common silylating agents are hexamethyldisilazane, trymethylchlorosilane and 

triphenylchlorosilane.
8
  

Another post-treatment method to enhance the activity of Sn-Beta in water 

could be to combine desilication and surface silylation. Hierarchical zeolites are 

known to be formed by desilication,
9–13

 introducing needed mesoporosity to enhance 

the accessibility of the active sites in the zeolite. Since glucose diffuses into the 

zeolite in the cyclic form,
14

 the desilication could facilitate the diffusion of glucose in 

the zeolite prior to reaching the active site. Desilication in the titanium zeolite TS-1 

has shown to increase the diffusion of aromatics, resulting in higher activity using 

acetone
15

 or water
16

 as solvents. However, in the case of Sn-Beta, additional surface 

silylation might be needed after desilication to protect the outer Sn sites from 

deactivation in water.   

2.2 Calcination 

The calcination of a zeolite can change completely its activity. While 

extensive research has been done on the calcination treatment of conventional 

zeolites,
17–20

 very little work has been reported on the calcination treatment of Lewis 

acid zeolites.
16,21

  The main effect of steaming is the de-alumination of the framework 

into extraframework aluminum,
17–20

 decreasing the concentration of Brønsted acid 

sites in the zeolite. Similarly, Sn-Beta was calcined under different steaming 
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conditions (Figure 6.4), changing the framework Sn sites (c.a. -700 ppm in 
119

Sn 

NMR) to extraframework SnO2 sites (-600 ppm in 
119

Sn NMR). Calcination under dry 

air conditions results in pure framework Sn sites (Figure 6.4a), while additional 

steaming at 25ºC induces the formation of some extraframework SnO2 (Figure 6.4b). 

However, when the as-synthesized Sn-Beta was calcined under steaming conditions 

of 80ºC a higher amount of extraframework was observed (Figure 6.4c). 

 

Figure 6.4 As-synthesized Sn-Beta calcined with (a) dry air, (b) air saturated with water at 25ºC 

after step (a), (c) air saturated with water at 80ºC, and (d) argon.  Steaming was performed by 

Raj Gounder and catalyst was synthesized by Ricardo Bermejo-Deval. All calcinations were done 

under following conditions: 1ºC/min to 150ºC, hold at 150ºC for 3 hours, 1ºC/min to 580ºC and 

hold at 580ºC for 12 hours. 

Changing the gas in the calcination treatment from dry air to argon produced 

no framework Sn sites and all extraframework Sn sites (Figure 6.4d). The argon 

treatment and steam treatment in zeolite Beta could be a way of synthesizing another 

SnO2/Si-Beta catalyst with higher activity than the one synthesized with SnO2 clusters 

during the synthesis gel. Since these SnO2 clusters would be formed in the zeolite 

Beta pores during calcinations, the amount extrazeolitic SnO2 clusters that are inactive 

in water would be decreased.
22
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