18,110 research outputs found

    Automated dynamic analytical model improvement for damped structures

    Get PDF
    A method is described to improve a linear nonproportionally damped analytical model of a structure. The procedure finds the smallest changes in the analytical model such that the improved model matches the measured modal parameters. Features of the method are: (1) ability to properly treat complex valued modal parameters of a damped system; (2) applicability to realistically large structural models; and (3) computationally efficiency without involving eigensolutions and inversion of a large matrix

    Dynamical Stability and Quantum Chaos of Ions in a Linear Trap

    Full text link
    The realization of a paradigm chaotic system, namely the harmonically driven oscillator, in the quantum domain using cold trapped ions driven by lasers is theoretically investigated. The simplest characteristics of regular and chaotic dynamics are calculated. The possibilities of experimental realization are discussed.Comment: 24 pages, 17 figures, submitted to Phys. Rev

    Spectrum of light scattering from an extended atomic wave packet

    Full text link
    The spectrum of the light scattered from an extended atomic wave packet is calculated. For a wave packet consisting of two spatially separated peaks moving on parallel trajectories, the spectrum contains Ramsey-like fringes that are sensitive to the phase difference between the two components of the wave packet. Using this technique, one can establish the mutual coherence of the two components of the wave packet without recombining them.Comment: 4 page

    Direct comparison of Viking 2.3-GHz signal phase fluctuation and columnar electron density between 2 and 160 solar radii

    Get PDF
    The relationship between solar wind induced signal phase fluctuation and solar wind columnar electron density has been the subject of intensive analysis during the last two decades. In this article, a sizeable volume of 2.3-GHz signal phase fluctuation and columnar electron density measurements separately and concurrently inferred from Viking spacecraft signals are compared as a function of solar geometry. These data demonstrate that signal phase fluctuation and columnar electron density are proportional over a very wide span of solar elongation angle. A radially dependent electron density model which provides a good fit to the columnar electron density measurements and, when appropriately scaled, to the signal phase fluctuation measurements, is given. This model is also in good agreement with K-coronameter observations at 2 solar radii (2r0), with pulsar time delay measurements at 10r0, and with spacecraft in situ electron density measurements at 1 AU

    Microscopic Theory of Spontaneous Decay in a Dielectric

    Full text link
    The local field correction to the spontanous dacay rate of an impurity source atom imbedded in a disordered dielectric is calculated to second order in the dielectric density. The result is found to differ from predictions associated with both "virtual" and "real" cavity models of this decay process. However, if the contributions from two dielectric atoms at the same position are included, the virtual cavity result is reproduced.Comment: 12 Page

    A compact micro-wave synthesizer for transportable cold-atom interferometers

    Full text link
    We present the realization of a compact micro-wave frequency synthesizer for an atom interferometer based on stimulated Raman transitions, applied to transportable inertial sensing. Our set-up is intended to address the hyperfine transitions of Rubidium 87 atoms at 6.8 GHz. The prototype is evaluated both in the time and the frequency domain by comparison with state-of-the-art frequency references developed at LNE-SYRTE. In free-running mode, it features a residual phase noise level of -65 dBrad$^2.Hz^{-1} at 10-Hz offset frequency and a white phase noise level in the order of -120 dBrad^2.Hz^{-1} for Fourier frequencies above 10 kHz. The phase noise effect on the sensitivity of the atomic interferometer is evaluated for diverse values of cycling time, interrogation time and Raman pulse duration. To our knowledge, the resulting contribution is well below the sensitivity of any demonstrated cold atom inertial sensors based on stimulated Raman transitions. The drastic improvement in terms of size, simplicity and power consumption paves the way towards field and mobile operations.Comment: accepted for publication in Review of Scientific Instruments, 6 pages, 4 figure

    Influence of External Fields and Environment on the Dynamics of Phase Qubit-Resonator System

    Full text link
    We analyze the dynamics of a qubit-resonator system coupled with a thermal bath and external electromagnetic fields. Using the evolution equations for the set of Heisenberg operators, that describe the whole system, we derive an expression for the resonator field, accounting for the resonator-drive,-bath, and -qubit interaction. The renormalization of the resonator frequency, caused by the qubit-resonator interaction, is accounted for. Using solutions for the resonator field, we derive the equation describing qubit dynamics. The influence of the qubit evolution during the measurement time on the fidelity of a single-shot measurement is studied. The relation between the fidelity and measurement time is shown explicitly. Also, an expression describing relaxation of the superposition qubit state towards its stationary value is derived. The possibility of controlling this state, by varying the amplitude and frequency of drive, is shown.Comment: 15 page

    The Deep Space Network. An instrument for radio navigation of deep space probes

    Get PDF
    The Deep Space Network (DSN) network configurations used to generate the navigation observables and the basic process of deep space spacecraft navigation, from data generation through flight path determination and correction are described. Special emphasis is placed on the DSN Systems which generate the navigation data: the DSN Tracking and VLBI Systems. In addition, auxiliary navigational support functions are described

    Survival of quantum effects for observables after decoherence

    Full text link
    When a quantum nonlinear system is linearly coupled to an infinite bath of harmonic oscillators, quantum coherence of the system is lost on a decoherence time-scale τD\tau_D. Nevertheless, quantum effects for observables may still survive environment-induced decoherence, and be observed for times much larger than the decoherence time-scale. In particular, we show that the Ehrenfest time, which characterizes a departure of quantum dynamics for observables from the corresponding classical dynamics, can be observed for a quasi-classical nonlinear oscillator for times τ≫τD\tau \gg\tau_D. We discuss this observation in relation to recent experiments on quantum nonlinear systems in the quasi-classical region of parameters.Comment: submitted to PR
    • …
    corecore