174 research outputs found
Institutionalizing Innovation: The New York Drug Court Story
The article begins by discussing the problems that drug use is causing in the American Criminal Justice System. The article then discusses the use of drug courts, which have proven effective in reducing drug use and recidivism. It then looks at the potential benefit of drug courts to the criminal justice system and states some of the questions pertaining to drug courts, such as limits and the requirement of specialized judges. The article concludes by looking at what critics have said about the use of drug courts, and by stating that the drug court idea is worth trying
MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice
Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases
The Genomics of Disulfide Bonding and Protein Stabilization in Thermophiles
Thermophilic organisms flourish in varied high-temperature environmental niches that are deadly to other organisms. Recently, genomic evidence has implicated a critical role for disulfide bonds in the structural stabilization of intracellular proteins from certain of these organisms, contrary to the conventional view that structural disulfide bonds are exclusively extracellular. Here both computational and structural data are presented to explore the occurrence of disulfide bonds as a protein-stabilization method across many thermophilic prokaryotes. Based on computational studies, disulfide-bond richness is found to be widespread, with thermophiles containing the highest levels. Interestingly, only a distinct subset of thermophiles exhibit this property. A computational search for proteins matching this target phylogenetic profile singles out a specific protein, known as protein disulfide oxidoreductase, as a potential key player in thermophilic intracellular disulfide-bond formation. Finally, biochemical support in the form of a new crystal structure of a thermophilic protein with three disulfide bonds is presented together with a survey of known structures from the literature. Together, the results provide insight into biochemical specialization and the diversity of methods employed by organisms to stabilize their proteins in exotic environments. The findings also motivate continued efforts to sequence genomes from divergent organisms
Genome-Wide Tissue-Specific Occupancy of the Hox Protein Ultrabithorax and Hox Cofactor Homothorax in Drosophila
The Hox genes are responsible for generating morphological diversity along the
anterior-posterior axis during animal development. The
Drosophila Hox gene Ultrabithorax
(Ubx), for example, is required for specifying the identity
of the third thoracic (T3) segment of the adult, which includes the dorsal
haltere, an appendage required for flight, and the ventral T3 leg.
Ubx mutants show homeotic transformations of the T3 leg
towards the identity of the T2 leg and the haltere towards the wing. All Hox
genes, including Ubx, encode homeodomain containing
transcription factors, raising the question of what target genes
Ubx regulates to generate these adult structures. To
address this question, we carried out whole genome ChIP-chip studies to identify
all of the Ubx bound regions in the haltere and T3 leg imaginal discs, which are
the precursors to these adult structures. In addition, we used ChIP-chip to
identify the sites bound by the Hox cofactor, Homothorax (Hth). In contrast to
previous ChIP-chip studies carried out in Drosophila embryos,
these binding studies reveal that there is a remarkable amount of tissue- and
transcription factor-specific binding. Analyses of the putative target genes
bound and regulated by these factors suggest that Ubx regulates many downstream
transcription factors and developmental pathways in the haltere and T3 leg.
Finally, we discovered additional DNA sequence motifs that in some cases are
specific for individual data sets, arguing that Ubx and/or Hth work together
with many regionally expressed transcription factors to execute their functions.
Together, these data provide the first whole-genome analysis of the binding
sites and target genes regulated by Ubx to specify the morphologies of the adult
T3 segment of the fly
Spatial, temporal, and demographic patterns in prevalence of chewing tobacco use in 204 countries and territories, 1990-2019: A systematic analysis from the Global Burden of Disease Study 2019
Background: Chewing tobacco and other types of smokeless tobacco use have had less attention from the global health community than smoked tobacco use. However, the practice is popular in many parts of the world and has been linked to several adverse health outcomes. Understanding trends in prevalence with age, over time, and by location and sex is important for policy setting and in relation to monitoring and assessing commitment to the WHO Framework Convention on Tobacco Control. Methods: We estimated prevalence of chewing tobacco use as part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 using a modelling strategy that used information on multiple types of smokeless tobacco products. We generated a time series of prevalence of chewing tobacco use among individuals aged 15 years and older from 1990 to 2019 in 204 countries and territories, including age-sex specific estimates. We also compared these trends to those of smoked tobacco over the same time period. Findings: In 2019, 273·9 million (95% uncertainty interval 258·5 to 290·9) people aged 15 years and older used chewing tobacco, and the global age-standardised prevalence of chewing tobacco use was 4·72% (4·46 to 5·01). 228·2 million (213·6 to 244·7; 83·29% [82·15 to 84·42]) chewing tobacco users lived in the south Asia region. Prevalence among young people aged 15–19 years was over 10% in seven locations in 2019. Although global age-standardised prevalence of smoking tobacco use decreased significantly between 1990 and 2019 (annualised rate of change: –1·21% [–1·26 to –1·16]), similar progress was not observed for chewing tobacco (0·46% [0·13 to 0·79]). Among the 12 highest prevalence countries (Bangladesh, Bhutan, Cambodia, India, Madagascar, Marshall Islands, Myanmar, Nepal, Pakistan, Palau, Sri Lanka, and Yemen), only Yemen had a significant decrease in the prevalence of chewing tobacco use, which was among males between 1990 and 2019 (−0·94% [–1·72 to –0·14]), compared with nine of 12 countries that had significant decreases in the prevalence of smoking tobacco. Among females, none of these 12 countries had significant decreases in prevalence of chewing tobacco use, whereas seven of 12 countries had a significant decrease in the prevalence of tobacco smoking use for the period. Interpretation: Chewing tobacco remains a substantial public health problem in several regions of the world, and predominantly in south Asia. We found little change in the prevalence of chewing tobacco use between 1990 and 2019, and that control efforts have had much larger effects on the prevalence of smoking tobacco use than on chewing tobacco use in some countries. Mitigating the health effects of chewing tobacco requires stronger regulations and policies that specifically target use of chewing tobacco, especially in countries with high prevalence. Funding: Bloomberg Philanthropies and the Bill & Melinda Gates Foundation
Single-Turnover Variable Chlorophyll Fluorescence as a Tool for Assessing Phytoplankton Photosynthesis and Primary Productivity: Opportunities, Caveats and Recommendations
Phytoplankton photosynthetic physiology can be investigated through single-turnover variable chlorophyll fluorescence (ST-ChlF) approaches, which carry unique potential to autonomously collect data at high spatial and temporal resolution. Over the past decades, significant progress has been made in the development and application of ST-ChlF methods in aquatic ecosystems, and in the interpretation of the resulting observations. At the same time, however, an increasing number of sensor types, sampling protocols, and data processing algorithms have created confusion and uncertainty among potential users, with a growing divergence of practice among different research groups. In this review, we assist the existing and upcoming user community by providing an overview of current approaches and consensus recommendations for the use of ST-ChlF measurements to examine in-situ phytoplankton productivity and photo-physiology. We argue that a consistency of practice and adherence to basic operational and quality control standards is critical to ensuring data inter-comparability. Large datasets of inter-comparable and globally coherent ST-ChlF observations hold the potential to reveal large-scale patterns and trends in phytoplankton photo-physiology, photosynthetic rates and bottom-up controls on primary productivity. As such, they hold great potential to provide invaluable physiological observations on the scales relevant for the development and validation of ecosystem models and remote sensing algorithms
- …