156 research outputs found

    Nonlinear analysis of spacecraft thermal models

    Full text link
    We study the differential equations of lumped-parameter models of spacecraft thermal control. Firstly, we consider a satellite model consisting of two isothermal parts (nodes): an outer part that absorbs heat from the environment as radiation of various types and radiates heat as a black-body, and an inner part that just dissipates heat at a constant rate. The resulting system of two nonlinear ordinary differential equations for the satellite's temperatures is analyzed with various methods, which prove that the temperatures approach a steady state if the heat input is constant, whereas they approach a limit cycle if it varies periodically. Secondly, we generalize those methods to study a many-node thermal model of a spacecraft: this model also has a stable steady state under constant heat inputs that becomes a limit cycle if the inputs vary periodically. Finally, we propose new numerical analyses of spacecraft thermal models based on our results, to complement the analyses normally carried out with commercial software packages.Comment: 29 pages, 4 figure

    Influence of temperature gradients on tunnel junction thermometry below 1 K: cooling and electron-phonon coupling

    Full text link
    We have studied thermal gradients in thin Cu and AlMn wires, both experimentally and theoretically. In the experiments, the wires were Joule heated non-uniformly at sub-Kelvin temperatures, and the resulting temperature gradients were measured using normal metal-insulator-superconducting tunnel junctions. The data clearly shows that even in reasonably well conducting thin wires with a short (∌10ÎŒ\sim 10 \mum) non-heated portion, significant temperature differences can form. In most cases, the measurements agree well with a model which includes electron-phonon interaction and electronic thermal conductivity by the Wiedemann-Franz law.Comment: J. Low Temp. Phys. in pres

    The effectiveness of distance-based interventions for smoking cessation and alcohol moderation among cancer survivors: A meta-analysis

    Get PDF
    Objective: The objective of this study is to evaluate current evidence for the effectiveness of distance-based interventions to support smoking cessation (SC) or alcohol moderation (AM) among cancer survivors. Secondary, differences in effectiveness are explored regarding multibehaviour interventions versus single-behaviour interventions targeting SC or AM only. Methods: A systematic search of PubMed, PsycINFO, Web of Science, EMBASE, CINAHL, and Cochrane Central Register of Controlled Trials was conducted. Intervention studies with and without control groups and randomized controlled trials were included. Random effects meta-analyses were conducted for the main outcomes: SC and AM rates at the follow-up closest to 6 months. Using subgroup analyses and meta-regression, effectiveness of single-behaviour versus multibehaviour interventions was evaluated. Results: A total of 17 studies with 3796 participants; nine studies on SC only, eight studies on multibehaviour interventions including an SC or AM module, and no studies on AM only were included. All studies had at least some concerns regarding bias. Distance-based SC interventions led to higher cessation rates than control conditions (10 studies, odds ratio [OR] = 1.56; 95% CI, 1.13-2.15, P =.007). Single-behaviour SC interventions reduced smoking rates compared with baseline (risk difference [RD] = 0.29; 95% CI, 0.19-0.39, P <.0001), but multibehaviour interventions did not (RD = 0.13; 95% CI, −0.05 to 0.31, P = 0.15). There was insufficient evidence that distance-based multibehaviour interventions reduced alcohol use compared with controls (three studies, standardized mean difference [SMD] = 0.12; 95% CI, −0.08 to 0.31, P =.24). Conclusions: Distance-based SC interventions are effective in supporting SC among cancer survivors. Single-behaviour SC interventions appear more effective than multibehaviour interventions. No evidence was found for the effectiveness of distance-based AM interventions for cancer survivors

    Pure type I supergravity and DE(10)

    Get PDF
    We establish a dynamical equivalence between the bosonic part of pure type I supergravity in D=10 and a D=1 non-linear sigma-model on the Kac-Moody coset space DE(10)/K(DE(10)) if both theories are suitably truncated. To this end we make use of a decomposition of DE(10) under its regular SO(9,9) subgroup. Our analysis also deals partly with the fermionic fields of the supergravity theory and we define corresponding representations of the generalized spatial Lorentz group K(DE(10)).Comment: 28 page

    Non-vacuum Solutions of Bianchi Type VI_0 Universe in f(R) Gravity

    Full text link
    In this paper, we solve the field equations in metric f(R) gravity for Bianchi type VI_0 spacetime and discuss evolution of the expanding universe. We find two types of non-vacuum solutions by taking isotropic and anisotropic fluids as the source of matter and dark energy. The physical behavior of these solutions is analyzed and compared in the future evolution with the help of some physical and geometrical parameters. It is concluded that in the presence of isotropic fluid, the model has singularity at t~=0\tilde{t}=0 and represents continuously expanding shearing universe currently entering into phantom phase. In anisotropic fluid, the model has no initial singularity and exhibits the uniform accelerating expansion. However, the spacetime does not achieve isotropy as t→∞t\rightarrow\infty in both of these solutions.Comment: 20 pages, 5 figures, accepted for publication in Astrophys. Space Sc

    Ultrarelativistic electron-hole pairing in graphene bilayer

    Full text link
    We consider ground state of electron-hole graphene bilayer composed of two independently doped graphene layers when a condensate of spatially separated electron-hole pairs is formed. In the weak coupling regime the pairing affects only conduction band of electron-doped layer and valence band of hole-doped layer, thus the ground state is similar to ordinary BCS condensate. At strong coupling, an ultrarelativistic character of electron dynamics reveals and the bands which are remote from Fermi surfaces (valence band of electron-doped layer and conduction band of hole-doped layer) are also affected by the pairing. The analysis of instability of unpaired state shows that s-wave pairing with band-diagonal condensate structure, described by two gaps, is preferable. A relative phase of the gaps is fixed, however at weak coupling this fixation diminishes allowing gapped and soliton-like excitations. The coupled self-consistent gap equations for these two gaps are solved at zero temperature in the constant-gap approximation and in the approximation of separable potential. It is shown that, if characteristic width of the pairing region is of the order of magnitude of chemical potential, then the value of the gap in the spectrum is not much different from the BCS estimation. However, if the pairing region is wider, then the gap value can be much larger and depends exponentially on its energy width.Comment: 13 pages with 8 figures; accepted to Eur. Phys. J.

    Plane-symmetric inhomogeneous magnetized viscous fluid universe with a variable Λ\Lambda

    Full text link
    The behavior of magnetic field in plane symmetric inhomogeneous cosmological models for bulk viscous distribution is investigated. The coefficient of bulk viscosity is assumed to be a power function of mass density (Ο=Ο0ρn)(\xi =\xi_{0}\rho^{n}). The values of cosmological constant for these models are found to be small and positive which are supported by the results from recent supernovae Ia observations. Some physical and geometric aspects of the models are also discussed.Comment: 18 pages, LaTex, no figur

    Pharmacognostical Sources of Popular Medicine To Treat Alzheimer’s Disease

    Get PDF
    • 

    corecore