166 research outputs found

    The magnetic field of M31 from multi-wavelength radio polarization observations

    Full text link
    The configuration of the regular magnetic field in M31 is deduced from radio polarization observations at the wavelengths 6, 11 and 20 cm. By fitting the observed azimuthal distribution of polarization angles, we find that the regular magnetic field, averaged over scales 1--3 kpc, is almost perfectly axisymmetric in the radial range 8 to 14 kpc, and follows a spiral pattern with pitch angles of p\simeq -19\degr to p\simeq -8\degr. In the ring between 6 and 8 kpc a perturbation of the dominant axisymmetric mode may be present, having the azimuthal wave number m=2. A systematic analysis of the observed depolarization allows us to identify the main mechanism for wavelength dependent depolarization -- Faraday rotation measure gradients arising in a magneto-ionic screen above the synchrotron disk. Modelling of the depolarization leads to constraints on the relative scale heights of the thermal and synchrotron emitting layers in M31; the thermal layer is found to be up to three times thicker than the synchrotron disk. The regular magnetic field must be coherent over a vertical scale at least similar to the scale height of the thermal layer, estimated to be h\therm\simeq 1 kpc. Faraday effects offer a powerful method to detect thick magneto-ionic disks or halos around spiral galaxies.Comment: 17 pages, 16 figures, accepted for publication in A&

    The radio-infrared correlation in galaxies

    Full text link
    The radio-infrared correlation was explained as a direct and linear relationship between star formation and IR emission. However, one fact making the IR-star formation linkage less obvious is that the IR emission consists of at least two emission components, cold dust and warm dust. The cold dust emission may not be directly linked to the young stellar population. Furthermore, understanding the origin of the radio-IR correlation requires to discriminate between the two main components of the radio continuum emission, free-free and synchrotron emission. Here, we present a multi-scale study of the correlation of IR with both the thermal and non-thermal (synchrotron) components of the radio continuum emission from the nearby galaxies M33 and M31.Comment: To appear in Highlights of Astronomy, Volume 15, XXVIIth IAU General Assembly, August 200

    The distance to the SNR CTB109 deduced from its environment

    Full text link
    We conducted a study of the environment around the supernova remnant CTB109. We found that the SNR is part of a large complex of HII regions extending over an area of 400 pc along the Galactic plane at a distance of about 3 kpc at the closer edge of the Perseus spiral arm. At this distance CTB109 has a diameter of about 24 pc. We demonstrated that including spiral shocks in the distance estimation is an ultimate requirement to determine reliable distances to objects located in the Perseus arm. The most likely explanation for the high concentration of HII regions and SNRs is that the star formation in this part of the Perseus arm is triggered by the spiral shock.Comment: 6 pages, 6 figures. accepted for publication in the Astrophysical Journa

    Magnetic fields and spiral arms in the galaxy M51

    Full text link
    (Abridged) We use new multi-wavelength radio observations, made with the VLA and Effelsberg telescopes, to study the magnetic field of the nearby galaxy M51 on scales from 200\pc to several \kpc. Interferometric and single dish data are combined to obtain new maps at \wwav{3}{6} in total and polarized emission, and earlier \wav{20} data are re-reduced. We compare the spatial distribution of the radio emission with observations of the neutral gas, derive radio spectral index and Faraday depolarization maps, and model the large-scale variation in Faraday rotation in order to deduce the structure of the regular magnetic field. We find that the \wav{20} emission from the disc is severely depolarized and that a dominating fraction of the observed polarized emission at \wav{6} must be due to anisotropic small-scale magnetic fields. Taking this into account, we derive two components for the regular magnetic field in this galaxy: the disc is dominated by a combination of azimuthal modes, m=0+2m=0+2, but in the halo only an m=1m=1 mode is required to fit the observations. We disuss how the observed arm-interarm contrast in radio intensities can be reconciled with evidence for strong gas compression in the spiral shocks. The average arm--interam contrast, representative of the radii r>2\kpc where the spiral arms are broader, is not compatible with straightforward compression: lower arm--interarm contrasts than expected may be due to resolution effects and \emph{decompression} of the magnetic field as it leaves the arms. We suggest a simple method to estimate the turbulent scale in the magneto-ionic medium from the dependence of the standard deviation of the observed Faraday rotation measure on resolution. We thus obtain an estimate of 50\pc for the size of the turbulent eddies.Comment: 21 pages, 18 figures (some at lower resolution than submitted version), accepted for publication in MNRA

    High-resolution radio continuum survey of M33 II. Thermal and nonthermal emission

    Full text link
    We determine the variation in the nonthermal radio spectral index in the nearby spiral galaxy M33 at a linear resolution of 360 pc. We separate the thermal and nonthermal components of the radio continuum emission without the assumption of a constant nonthermal spectral index. Using the Spitzer FIR data at 70 and 160 μ\mum and a standard dust model, we deredden the Hα\alpha emission. The extinction corrected Hα\alpha emission serves as a template for the thermal free-free radio emission. Subtracting from the observed 3.6 cm and 20 cm emission (Effelsberg and the VLA) this free-free emission, we obtain the nonthermal maps. A constant electron temperature used to obtain the thermal radio intensity seems appropriate for M~33 which, unlike the Milky Way, has a shallow metallicity gradient. For the first time, we derive the distribution of the nonthermal spectral index across a galaxy, M33. We detect strong nonthermal emission from the spiral arms and star-forming regions. Wavelet analysis shows that at 3.6 cm the nonthermal emission is dominated by contributions from star-forming regions, while it is smoothly distributed at 20 cm. For the whole galaxy, we obtain thermal fractions of 51% and 18% at 3.6 cm and 20 cm, respectively. The thermal emission is slightly stronger in the southern than in the northern half of the galaxy. We find a clear radial gradient of mean extinction in the galactic plane. The nonthermal spectral index map indicates that the relativistic electrons suffer energy-loss when diffusing from their origin in star-forming regions towards interarm regions and the outer parts of the galaxy. We also conclude that the radio emission is mostly nonthermal at R >> 5 kpc in M33.Comment: 15 pages, 14 figures, accepted for publication in the Astronomy and Astrophysics journa

    Densities and filling factors of the DIG in the Solar neighbourhood

    Full text link
    For the first time we have combined dispersion measures and emission measures towards 38 pulsars at KNOWN distances from which we derived the mean electron density in clouds, N_c, and their volume filling factor, F_v, averaged along the line of sight. The emission measures were corrected for absorption by dust and contributions from beyond the pulsar distance. Results: The scale height of the electron layer for our sample is 0.93+/-0.13 kpc and the midplane electron density is 0.023+/-0.004 cm^-3, in agreement with earlier results. The average density along the line of sight is = 0.018+/-0.002 cm^-3 and nearly constant. Since = F_v N_c, an inverse relationship between F_v and N_c is expected. We find F_v(N_c) = (0.011+/-0.003) N_c^{-1.20+/-0.13}, which holds for the ranges N_c = 0.05-1 cm^-3 and F_v = 0.4-0.01. Near the Galactic plane the dependence of F_v on N_c is significantly stronger than away from the plane. F_v does not systematically change along or perpendicular to the Galactic plane, but the spread about the mean value of 0.08+/-0.02 is considerable. Conclusions: The inverse F_v-N_c relation is consistent with a hierarchical, fractal density distribution in the diffuse ionized gas (DIG) caused by turbulence. The observed near constancy of then is a signature of fractal structure in the ionized medium, which is most pronounced outside the thin disk.Comment: 9 pages, 9 figures. Accepted for publication in A&

    Scaling and correlation analysis of galactic images

    Get PDF
    Different scaling and autocorrelation characteristics and their application to astronomical images are discussed: the structure function, the autocorrelation function, Fourier spectra and wavelet spectra. We recommend as the optimal mathematical tool the wavelet spectrum with a suitable choice of the analysing wavelet. We introduce the wavelet cross-correlation function which enables to study the correlation between images as a function of scale. The wavelet cross-correlation coefficient strongly depends on the scale. The classical cross-correlation coefficient can be misleading if a bright, extended central region or an extended disk exists in the galactic images. An analysis of the scaling and cross-correlation characteristics of 9 optical and radio maps of the nearby spiral galaxy NGC 6946 is presented. The wavelet spectra allow to separate structures on different scales like spiral arms and diffuse extended emission. Only the images of thermal radio emission and Halpha emission give indications of 3-dimensional Kolmogorov-type turbulence on the smallest resolved scales (160-800 pc). The cross-correlations between the images of NGC 6946 show strong similarities between the images of total radio emission, red light and mid-infrared dust emission on all scales. The best correlation is found between total radio emission and dust emission. Thermal radio continuum and Halpha emission are best correlated on a scale of about 1' \simeq 1.6 kpc, the typical width of a spiral arm. On a similar scale, the images of polarised radio and Halpha emission are anticorrelated, which remains undetected with classical ross-correlation analysis.Comment: 15 pages with 12 figures. Accepted for publication in MNRA

    OVI, NV and CIV in the Galactic Halo: II. Velocity-Resolved Observations with Hubble and FUSE

    Full text link
    We present a survey of NV and OVI (and where available CIV) in the Galactic halo, using data from the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Hubble Space Telescope (HST) along 34 sightlines. These ions are usually produced in nonequilibrium processes such as shocks, evaporative interfaces, or rapidly cooling gas, and thus trace the dynamics of the interstellar medium. Searching for global trends in integrated and velocity-resolved column density ratios, we find large variations in most measures, with some evidence for a systematic trend of higher ionization (lower NV/OVI column density ratio) at larger positive line-of-sight velocities. The slopes of log[N(NV)/N(OVI)] per unit velocity range from -0.015 to +0.005, with a mean of -0.0032+/-0.0022(r)+/-0.0014(sys) dex/(km/s). We compare this dataset with models of velocity-resolved high-ion signatures of several common physical structures. The dispersion of the ratios, OVI/NV/CIV, supports the growing belief that no single model can account for hot halo gas, and in fact some models predict much stronger trends than are observed. It is important to understand the signatures of different physical structures to interpret specific lines of sight and future global surveys.Comment: ApJ in press 43 pages, 22 fig
    • …
    corecore