23 research outputs found

    Vortex -- Kink Interaction and Capillary Waves in a Vector Superfluid

    Full text link
    Interaction of a vortex in a circularly polarized superfluid component of a 2d complex vector field with the phase boundary between superfluid phases with opposite signs of polarization leads to a resonant excitation of a ``capillary'' wave on the boundary. This leads to energy losses by the vortex--image pair that has to cause its eventual annihilation.Comment: LaTeX 7 pages, no figure

    Quantum temporal correlations and entanglement via adiabatic control of vector solitons

    Get PDF
    It is shown that optical pulses with a mean position accuracy beyond the standard quantum limit can be produced by adiabatically expanding an optical vector soliton followed by classical dispersion management. The proposed scheme is also capable of entangling positions of optical pulses and can potentially be used for general continuous-variable quantum information processing.Comment: 5 pages, 1 figure, v2: accepted by Physical Review Letters, v3: minor editing and shortening, v4: included the submitted erratu

    Modulational instability and nonlocality management in coupled NLS system

    Full text link
    The modulational instability of two interacting waves in a nonlocal Kerr-type medium is considered analytically and numerically. For a generic choice of wave amplitudes, we give a complete description of stable/unstable regimes for zero group-velocity mismatch. It is shown that nonlocality suppresses considerably the growth rate and bandwidth of instability. For nonzero group-velocity mismatch we perform a geometrical analysis of a nonlocality management which can provide stability of waves otherwise unstable in a local medium.Comment: 15 pages, 12 figures, to be published in Physica Script

    Instability of two interacting, quasi-monochromatic waves in shallow water

    Full text link
    We study the nonlinear interactions of waves with a doubled-peaked power spectrum in shallow water. The starting point is the prototypical equation for nonlinear uni-directional waves in shallow water, i.e. the Korteweg de Vries equation. Using a multiple-scale technique two defocusing coupled Nonlinear Schr\"odinger equations are derived. We show analytically that plane wave solutions of such a system can be unstable to small perturbations. This surprising result suggests the existence of a new energy exchange mechanism which could influence the behaviour of ocean waves in shallow water.Comment: 4 pages, 2 figure

    Modulational instability of solitary waves in non-degenerate three-wave mixing: The role of phase symmetries

    Get PDF
    We show how the analytical approach of Zakharov and Rubenchik [Sov. Phys. JETP {\bf 38}, 494 (1974)] to modulational instability (MI) of solitary waves in the nonlinear Schr\"oedinger equation (NLS) can be generalised for models with two phase symmetries. MI of three-wave parametric spatial solitons due to group velocity dispersion (GVD) is investigated as a typical example of such models. We reveal a new branch of neck instability, which dominates the usual snake type MI found for normal GVD. The resultant nonlinear evolution is thereby qualitatively different from cases with only a single phase symmetry.Comment: 4 pages with figure

    Modulational instability of bright solitary waves in incoherently coupled nonlinear Schr\"odinger equations

    Get PDF
    We present a detailed analysis of the modulational instability (MI) of ground-state bright solitary solutions of two incoherently coupled nonlinear Schr\"odinger equations. Varying the relative strength of cross-phase and self-phase effects we show existence and origin of four branches of MI of the two-wave solitary solutions. We give a physical interpretation of our results in terms of the group velocity dispersion (GVD) induced polarization dynamics of spatial solitary waves. In particular, we show that in media with normal GVD spatial symmetry breaking changes to polarization symmetry breaking when the relative strength of the cross-phase modulation exceeds a certain threshold value. The analytical and numerical stability analyses are fully supported by an extensive series of numerical simulations of the full model.Comment: Physical Review E, July, 199

    Integrable semi-discretization of the coupled nonlinear Schr\"{o}dinger equations

    Full text link
    A system of semi-discrete coupled nonlinear Schr\"{o}dinger equations is studied. To show the complete integrability of the model with multiple components, we extend the discrete version of the inverse scattering method for the single-component discrete nonlinear Schr\"{o}dinger equation proposed by Ablowitz and Ladik. By means of the extension, the initial-value problem of the model is solved. Further, the integrals of motion and the soliton solutions are constructed within the framework of the extension of the inverse scattering method.Comment: 27 pages, LaTeX2e (IOP style

    Gain through losses in nonlinear optics

    Get PDF
    Instabilities of uniform states are ubiquitous processes occurring in a variety of spatially extended nonlinear systems. These instabilities are at the heart of symmetry breaking, condensate dynamics, self-organization, pattern formation and noise amplification across diverse disciplines, including physics, chemistry, engineering and biology. In nonlinear optics, modulation instabilities are generally linked to the so-called parametric amplification process, which occurs when certain phase-matching or quasi-phase-matching conditions are satisfied. In the present review article, we summarize the principle results on modulation instabilities and parametric amplification in nonlinear optics, with special emphasis on optical fibres. We then review state-of-the-art research about a peculiar class of modulation instabilities and signal amplification processes induced by dissipation in nonlinear optical systems. Losses applied to certain parts of the spectrum counterintuitively lead to the exponential growth of the damped mode themselves, causing gain through losses. We discuss the concept of imaging of losses into gain, showing how to map a given spectral loss profile into a gain spectrum. We demonstrate with concrete examples that dissipation-induced modulation instability, apart from being of fundamental theoretical interest, may pave the way towards the design of a new class of tuneable fibre-based optical amplifiers, optical parametric oscillators, frequency comb sources and pulsed lasers
    corecore