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Modulational instability of solitary waves in non-degenerate three-wave mixing:

The role of phase symmetries.

Dmitry V. Skryabin ∗, and William J. Firth
Department of Physics and Applied Physics, John Anderson Building,

University of Strathclyde, 107 Rottenrow, Glasgow, G4 0NG, Scotland

(April 8, 1998)

We show how the analytical approach of Zakharov and
Rubenchik [Sov. Phys. JETP 38, 494 (1974)] to modu-
lational instability (MI) of solitary waves in the nonlinear
Schröedinger equation (NLS) can be generalised for models
with two phase symmetries. MI of three-wave parametric
spatial solitons due to group velocity dispersion (GVD) is
investigated as a typical example of such models. We reveal
a new branch of neck instability, which dominates the usual
snake type MI found for normal GVD. The resultant nonlin-
ear evolution is thereby qualitatively different from cases with
only a single phase symmetry.

One of the central issues of solitary wave theory is
the question of stability [1,2]. Stability of solitary waves
(’solitons’) in nonintegrable Hamiltonian models is often
governed by the derivative of a certain invariant with re-
spect to an associated parameter of the solution [1–3].
For instance, positivity of the derivative of the total
energy with respect to the nonlinearity-induced wave-
number shift is sufficient for stability of bright solitary
waves in such fundamental processes as self-action of ra-
diation in media with intensity dependent refractive in-
dex and in degenerate three-wave mixing in quadratic
nonlinear media [3].

A wide range of parametric processes conserve not only
the total energy of the interacting waves but also other
energy invariants. These can be, for instance, energies of
individual waves or energy unbalance of two waves. Typ-
ical examples of such processes are non-degenerate three-
wave [4–7] and four-wave mixings [8]. By Noether’s the-
orem every integral of the motion in Hamiltonian models
originates from a corresponding symmetry property. En-
ergy invariants are often associated with phase (gauge)
symmetries. Although many issues of the dynamics of the
multi-wave solitons in models with several symmetries
still remain to be understood, their stability threshold in
many situations is given by a zero of the determinant of
the Jacobi matrix ||∂κj

Qi|| [2,6,7]. Here Qi and κj are
respectively the integrals of motion and their associated
parameters.

Soliton dynamics in a space where the soliton is lo-
calised in some dimensions but extended in one or more
others, e.g. consideration of a soliton stripe, raises the
problem of modulational instability (MI) along the extra
dimensions [1]. MI of solitary waves has been studied in

many fields, including plasma physics [1], fluid dynam-
ics [1,10] and optics [1,11–15]. For instance in optics the
above-mentioned extra dimensions might be associated
with diffraction and/or group velocity dispersion (GVD).
An analytical approach to the low-frequency limit of MI
for bright solitary waves was originally developed by Za-
kharov and Rubenchik [9] for the generalised NLS equa-
tion, which has a single phase symmetry. This approach
is based on asymptotic expansion near neutrally stable
eigenmodes (Goldstone modes) of the solitary wave ex-
citation spectrum. The presence of such neutral modes
is directly linked to the symmetries of the model. It fol-
lows that systems with a single phase symmetry should
be qualitatively similar to the NLS case [9], where the
soliton always shows MI in the extra dimension. The
unstable mode is of neck type (the soliton stripe breaks
into a chain of spots) or snake type (the stripe distorts in
zig-zag fashion) depending on the relative signs of the dis-
persive terms in the localised and extended dimensions.
All previous studies of solitary wave MI [1,10–15] have
been restricted to situations with a single phase symme-
try, and all do indeed exhibit NLS-like MI. For example,
in degenerate three-wave mixing (3WM), which has a
single phase symmetry, the first analytical results on MI
of solitary waves reported by Kanashov and Rubenchik
[11] and recently extended and supported by numerical
results [12,13], typically show the neck/snake scenario.

The influence of extra phase symmetries on MI of soli-
tary waves is still an open issue and is the main sub-
ject of the present Letter. We will concentrate on non-

degenerate 3WM as a typical and practically important
example of a solitonic model with two phase symmetries,
motivated by recent theoretical [6,7] and experimental
[5,14] advances in the study of quadratic optical solitons.

In this Letter we show that MI of solitary waves in non-

degenerate 3WM reveals a new branch of neck-type insta-
bility which can be ascribed to the extra phase symmetry
and its corresponding neutral mode. We show that in me-
dia with normal GVD this new instability dominates the
snake-mode responsible for MI in the corresponding de-
generate 3WM model. Our theoretical approach and the
phenomena predicted by it should extend to other soli-
tonic systems of broad interest with similar symmetry
properties, e.g. to incoherently coupled NLS equations
[16] and non-degenerate 4WM [8].

In non-degenerate 3WM the evolution of suitably nor-
malised slowly varying field envelopes Em (m = 1, 2, 3)
of three waves with carrier frequencies ωm (ω1+ω2 = ω3)

1



propagating in a dispersive and diffractive quadratic non-
linear medium can be modeled [4–7] by the following sys-
tem of dimensionless equations:

i∂zE1 + α1∂
2
xE1 + γ1∂

2
tE1 + E∗

2E3 = 0,

i∂zE2 + α2∂
2
xE2 + γ2∂

2
tE2 + E∗

1E3 = 0, (1)

i∂zE3 + α3∂
2
xE3 + γ3∂

2
tE3 + E1E2 = βE3.

Transverse x, longitudinal z and retarded time t co-
ordinates are respectively measured in units of a suit-
able beam width, diffraction length and GVD parame-
ter. The αm and γm are diffraction and dispersion co-
efficients referred to these scales, and the wave-vector
mismatch is characterised by β. We neglect spatial and
temporal walk-off effects, implicitly assuming that either
their spatial and temporal scales are much longer than
those associated with diffraction and GVD, or that walk-
off is compensated by special techniques, as in recent
experiments on temporal solitons in degenerate 3WM
[17]. Henceforth we make the experimentally appropriate
choice α1,2 = 2α3 = 0.5. We also assume all γm either
negative (normal GVD) or positive (anomalous GVD),
leaving the case of mixed dispersion for future work. For
the sake of simplicity we have restricted our model to one
transverse dimension, as in a planar waveguide.

Suppressing the time derivatives for the moment, Eqs.
(1) have a family of non-diffracting solitonic solutions
Em = Am(x)ei(κmz+φm), where the Am are real, κ1,2 =
κ ± δ are positive parameters, κ3 = 2κ > −β and
φ1,2 = ϕ ± ψ, φ3 = 2ϕ, where ϕ and ψ are arbitrary
real constants. In general functions Am(x) must be found
numerically or approximated variationally [6,7]. The free
choice of ϕ and ψ implies two phase (gauge) symmetries,
which by Noether’s theorem leads to two conserved quan-
tities. These are the total energyQ = Q1+Q2+2Q3, and
energy unbalance Qu = Q1 −Q2, or equivalent combina-
tions of the Qm =

∫

dx|Em|2. Note that the degenerate
case forces E1 = E2, and thus ψ = 0, which suppresses
one phase symmetry.

Our primary aim here is to study temporal MI due
to GVD of these spatial solitons. This is most interest-
ing and important when they are spatially stable. Their
stability against purely spatial perturbations has been
studied [6,7], yielding a stability boundary which in our
notation is given by ∂δQ∂κQu = ∂κQ∂δQu. Spatially
stable domain is in fact almost the entire domain of soli-
ton existence, excluding only a small range of κ, δ values
with β < 0 [6,7]. Close to this region there is also a small
domain of bistability [6]. Therefore the existence and
nature of temporal MI is the important question for al-
most all parameter values, and in particular for the entire
half-space with β ≥ 0.

To study MI due to GVD we seek solutions of
Eqs. (1) in the form of spatial solitons weakly mod-
ulated in time at frequency Ω ≥ 0: Em = (Am(x) +
(Vm(x, z) + iWm(x, z)) cosΩt)ei(κmz+φm). Setting Vm =
vme

λz , Wm = wme
λz, we obtain two eigenvalue prob-

lems L̂−L̂+~v = λ2~v and L̂+L̂− ~w = λ2 ~w, where ~v =

(v1, v2, v3)
T , ~w = (w1, w2, w3)

T and

L̂± =





±L̂1 A3 ±A2

A3 ±L̂2 ±A1

±A2 ±A1 ±L̂3



 ,

L̂m = αm∂
2
x − γmΩ2 − ξm, where ξ1,2 = κ ± δ and ξ3 =

2κ + β. Note that L̂± are self-adjoint, so L̂−L̂+ and

L̂+L̂− are adjoint operators with identical spectra. It
is thus enough to consider the spectrum of one of these
operators, e.g. L̂+L̂−. We are particularly interested in
the discrete spectrum, with eigenfunctions exponentially
decaying at x→ ±∞.

In general the stability problem can only be solved
numerically, but for small absolute values of λ we can
obtain some analytical results. Our two phase symme-
tries, plus the Galilean one, generate three neutrally sta-
ble (λ = 0) eigenmodes of L̂+L̂− at Ω = 0. These
are: ~wϕ = (A1, A2, 2A3)

T , ~wψ = (A1,−A2, 0)T , ~wx =
(xA1, xA2, 2xA3)

T . Assuming that Ω ≪ 1 we can ex-
press ~w as a linear combination of ~wϕ, ~wψ, ~wx and then
use an asymptotic approach to find eigenvectors and cor-
responding eigenvalues. This approach can be applied
only if all other eigenmodes have eigenvalues obeying the
condition |λ| > Ω. In practice this only excludes a small
neighborhood of the spatial stability boundary discussed
above.

Three eigenvalue pairs ±λ are obtained from solvabil-
ity conditions of the first order problems. One, associated
with the asymmetric eigenvector ~wx, obeys

λ2
x ≃ −

2Ω2

Q

∫

dx

3
∑

m=1

γm(∂xAm)2. (2)

Clearly the asymmetric mode is unstable for normal

GVD, which corresponds to the snake instabilities found
in NLS [9,10] and degenerate 3WM [11,12] models.

The other two eigenvalue pairs are associated with
linear combinations of the spatially symmetric vectors
Cϕ ~wϕ + Cψ ~wψ , and thus with neck-type instabilities.
They are the roots of

aλ4 + bΩ2λ2 + cΩ4 = 0, (3)

where a = (∂δQ∂κQu − ∂κQ∂δQu)/2, b = ∂κQ(γ1Q1 +
γ2Q2) + ∂δQu(γ1Q1 + γ2Q2 + 4γ3Q3) + (∂κQu +
∂δQ)(γ2Q2−γ1Q1), and c = −8(γ1γ2Q1Q2+γ2γ3Q2Q3+
γ1γ3Q1Q3). These expressions are quite complicated, but
yield some important general results. Clearly c is nega-
tive when all γm of the same sign. Since a > 0 throughout
the spatially monostable domain, it follows that the two
roots λ2 are always real and of opposite sign, so that
there is always an unstable neck-type mode. Thus we
establish coexistence and competition of neck and snake

instabilities for normal GVD. This is a novel feature of
the present model, quite different from previous analyt-
ical results for NLS [9,10] and degenerate 3WM [11,12],
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where the snake instability is the only one for normal
GVD. This is because only one symmetric neutral mode
exists in models with a single phase symmetry, and it
generates instability only for anomalous GVD. In non-
degenerate 3WM there are two neck modes, one stable
for normal GVD and unstable for anomalous GVD, and
vice versa, since b is odd in the γm.

Simple analytic expressions for growth rates of these
neck modes can be obtained in several special cases, e.g.
in the case of second harmonic generation (ω1 = ω2). Set-
ting γ1 = γ2 and δ = 0 (readily achieved in experiment
[5]) the two eigenmodes have either Cϕ = 0 or Cψ = 0,
with eigenvalues

λ2
ψ ≃ 2γ1Ω

2 Q1

∂δQ1
, λ2

ϕ ≃
4Ω2

∂κQ
(γ1Q1 + 2γ3Q3). (4)

For δ = 0, ∂κQ is positive and ∂δQ1 is negative in the
spatially monostable domain. Thus the novel neck insta-
bility for γ1 < 0 can be directly attributed to the gauge
symmetry in the differential phase ψ and its associated
neutral mode ~wψ. On the other hand λϕ is associated
with the usual neck MI for anomalous GVD in models
with a single gauge symmetry [9–13]. The expression for
λ2
ψ holds also (when Qu = 0) for other solitonic models

with a differential phase symmetry. Note, however, that
∂δQ1 can generally have either sign, leading to instability
with either normal or anomalous GVD.

Solving the eigenvalue problem numerically, we find
that in low-frequency limit the instability growth rates
precisely match those predicted by our perturbation the-
ory, see Fig. 1(a), (b). As Ω is increased each MI gain
curve reaches a maximum and then decreases. A typical
example of the maximal MI growth rate vs β is presented
in Fig. 1(c). Similar plots for Qu 6= 0 and across wide
range of γm values show the same behaviour [18]. Thus
we conclude that for normal GVD the new neck insta-

bility strongly dominates the snake one. Note that its
growth rate is maximised, as Fig. 1(a), (b) illustrate, for
Qu = 0. For normal GVD the unstable eigenfunctions
become weakly confined and develop oscillating tails as
Ω increases. Because this increases computer demand, we
have plotted growth rates in Fig. 1(a) only for Ω values
corresponding to well-localised eigenmodes. Physically,
broader eigenmodes have weaker overlap with the soli-
ton, and hence lesser gain.

Spatial profiles of the symmetric eigenfunctions at
maximum gain (Ω = Ωmax) are presented in Fig. 2.
Despite this being well beyond the perturbative limit in
which expressions (4) apply, the novel neck MI eigen-
mode still has qualitatively the same form as ~wψ, i.e.
w1 = −w2, w3 = 0, indicating that the ψ phase symme-
try underlies the instability through the whole range of
Ω. Similarly, the ustable neck mode for anomalous GVD
is evidently associated with the ϕ symmetry.

To test our linear stability analysis and study the non-
linear evolution we performed an extensive series of com-
puter simulations of the system (1) with initial conditions

in form of a soliton stripe perturbed by spatio-temporal
white noise of order 1%. Typical simulation results are
presented in Fig. 3 and they fully support our predic-
tions. We chose the size of the computational window
in the time domain to be 18π/Ωmax, and the initial soli-
ton stripe rapidly develops nine humps, in accord with
the stability analysis. During further evolution the mod-
ulated stripe forms into a train of pulses which either
spread (normal GVD) or form a persistent chain of three-
wave optical bullets (anomalous GVD). Due to the initial
noise, modes from a band of frequencies close to Ωmax are
able to grow and compete, and hence the modulations in
Fig. 3 are somewhat irregular.

A striking difference between Figs. 3(a,c) is that the
initially imposed translational symmetry of the solitary
stripe along the time dimension is broken in different
ways. For normal GVD interleaved intensity peaks of
E1 and E2 are formed, while for anomalous GVD the
intensity peaks coincide. (Each amplitude is modulated
with period ≃ 2π/Ωmax.)

This difference is directly related with the spatial form
of the most unstable eigenvectors. In the case of nor-
mal GVD w1 and w2 are out of phase and w3 = 0,
see Fig. 2(a), leading to the interleaving. Since E1E2

drives E3, the intensity profile of the second harmonic
becomes modulated with period π/Ωmax, see Fig. 3(a3).
Because the overlap of the three fields is diminished by
this evolution, mutual trapping becomes impossible and
the whole structure eventually spreads through diffrac-
tion and dispersion, see Fig. 3(b). For anomalous GVD,
all three components of most unstable eigenvector are in
phase, see Fig. 2(b), and thus all three intensities be-
come modulated with the same temporal period, see Fig.
3 (c1), (c2), (c3). This provides conditions for mutual
self-trapping of the filaments, see Fig. 3(d).

The predicted instabilities can be experimentally ob-
served in a nonlinear material longer than the MI gain
length lg ∼ λ−1 and with pulse width order of several
2π/Ωmax or more. Following Ref. [12], typical values for
KTP lg ∼ 1cm and 2π/Ωmax ∼ 10−12s. Fig. 1(c) shows
that the new neck instability has the highest gain and is
thus most easily observable. Artificially birefrigent semi-
conductor materials, which are highly nonlinear, seem
quite promising, based on a recent experiments on 3WM
[19]. Waveguides containing Bragg structures might be
very suitable for observation of the MI phenomena pre-
dicted here because of their large and controllable dis-
persion [20].

In summary, we have analysed and described dispersive
MI of spatial solitons due to non-degenerate 3WM. Using
this model as a typical example we generalised a previous
analytical approach to MI [9] to models with two phase
symmetries. We found that the extra neutral mode asso-
ciated with the additional phase symmetry gives rise to a
new branch of MI. This is symmetric (of neck type), and
is found to dominate the asymmetric (snake) instability
which is the only MI for normal GVD in systems possess-
ing just one phase symmetry. This result enables a new
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understanding of the dynamics of multi-component soli-
tary waves in terms of their phase symmetry properties.
The MI phenomena which we have described for 3WM
are likely to be generic in other solitonic and nonlinear
wave models with two phase symmetries.

This work was partially supported by EPSRC grant
GR/L 27916.
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FIG. 1. (a-b) Instability growth rate vs Ω: Q = 65, β = 0.
Thick (thin) lines are for κ = 2, δ = 0, Qu = 0 (κ = 2.075,
δ = 1.525, Qu = −36). Full (dashed) lines correspond to neck
(snake) MI. Dotted lines are perturbative results. (a) Normal
dispersion: γ1,2 = 2γ3 = −0.5. (b) Anomalous dispersion:
γ1,2 = 2γ3 = 0.5. (c) MI growth rate at Ω = Ωmax vs β for
κ = 2, δ = 0. Full (dashed) lines correspond to neck (snake)
MI for γ1,2 = 2γ3 = −0.5; dot-dashed line to neck MI for
γ1,2 = 2γ3 = 0.5
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FIG. 2. Most unstable eigenmodes (Ω = Ωmax) for
β = δ = 0, κ = 2. (a) Normal dispersion: γ1,2 = 2γ3 = −0.5;
(b) Anomalous dispersion: γ1,2 = 2γ3 = 0.5.
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FIG. 3. Development of noise-induced instability of spa-
tial soliton stripe: κ = 2, δ = β = 0. Left (right) panels for
γ1,2 = 2γ3 = −0.5 (γ1,2 = 2γ3 = 0.5). (am) |Em| at z = 2.7,
(b) |E1| at z = 4.5, (cm) |Em| at z = 5.4, (d) |E1| at z = 10.8.
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