44 research outputs found
The Outer Tracker Detector of the HERA-B Experiment Part I: Detector
The HERA-B Outer Tracker is a large system of planar drift chambers with
about 113000 read-out channels. Its inner part has been designed to be exposed
to a particle flux of up to 2.10^5 cm^-2 s^-1, thus coping with conditions
similar to those expected for future hadron collider experiments. 13
superlayers, each consisting of two individual chambers, have been assembled
and installed in the experiment. The stereo layers inside each chamber are
composed of honeycomb drift tube modules with 5 and 10 mm diameter cells.
Chamber aging is prevented by coating the cathode foils with thin layers of
copper and gold, together with a proper drift gas choice. Longitudinal wire
segmentation is used to limit the occupancy in the most irradiated detector
regions to about 20 %. The production of 978 modules was distributed among six
different laboratories and took 15 months. For all materials in the fiducial
region of the detector good compromises of stability versus thickness were
found. A closed-loop gas system supplies the Ar/CF4/CO2 gas mixture to all
chambers. The successful operation of the HERA-B Outer Tracker shows that a
large tracker can be efficiently built and safely operated under huge radiation
load at a hadron collider.Comment: 28 pages, 14 figure
Aging Studies for the Large Honeycomb Drift Tube System of the Outer Tracker of HERA-B
The HERA-B Outer Tracker consists of drift tubes folded from polycarbonate
foil and is operated with Ar/CF4/CO2 as drift gas. The detector has to stand
radiation levels which are similar to LHC conditions. The first prototypes
exposed to radiation in HERA-B suffered severe radiation damage due to the
development of self-sustaining currents (Malter effect). In a subsequent
extended R&D program major changes to the original concept for the drift tubes
(surface conductivity, drift gas, production materials) have been developed and
validated for use in harsh radiation environments. In the test program various
aging effects (like Malter currents, gain loss due to anode aging and etching
of the anode gold surface) have been observed and cures by tuning of operation
parameters have been developed.Comment: 14 pages, 6 figures, to be published in the Proceedings of the
International Workshop On Aging Phenomena In Gaseous Detectors, 2-5 Oct 2001,
Hamburg, German
The Outer Tracker Detector of the HERA-B Experiment. Part II: Front-End Electronics
The HERA-B Outer Tracker is a large detector with 112674 drift chamber
channels. It is exposed to a particle flux of up to 2x10^5/cm^2/s thus coping
with conditions similar to those expected for the LHC experiments. The
front-end readout system, based on the ASD-8 chip and a customized TDC chip, is
designed to fulfil the requirements on low noise, high sensitivity, rate
tolerance, and high integration density. The TDC system is based on an ASIC
which digitizes the time in bins of about 0.5 ns within a total of 256 bins.
The chip also comprises a pipeline to store data from 128 events which is
required for a deadtime-free trigger and data acquisition system. We report on
the development, installation, and commissioning of the front-end electronics,
including the grounding and noise suppression schemes, and discuss its
performance in the HERA-B experiment
Inclusive Production Cross Sections from 920 GeV Fixed Target Proton-Nucleus Collisions
Inclusive differential cross sections and
for the production of \kzeros, \lambdazero, and
\antilambda particles are measured at HERA in proton-induced reactions on C,
Al, Ti, and W targets. The incident beam energy is 920 GeV, corresponding to
GeV in the proton-nucleon system. The ratios of differential
cross sections \rklpa and \rllpa are measured to be and , respectively, for \xf . No significant dependence upon the
target material is observed. Within errors, the slopes of the transverse
momentum distributions also show no significant
dependence upon the target material. The dependence of the extrapolated total
cross sections on the atomic mass of the target material is
discussed, and the deduced cross sections per nucleon are
compared with results obtained at other energies.Comment: 17 pages, 7 figures, 5 table
The QCD transition temperature: results with physical masses in the continuum limit II.
We extend our previous study [Phys. Lett. B643 (2006) 46] of the cross-over
temperatures (T_c) of QCD. We improve our zero temperature analysis by using
physical quark masses and finer lattices. In addition to the kaon decay
constant used for scale setting we determine four quantities (masses of the
\Omega baryon, K^*(892) and \phi(1020) mesons and the pion decay constant)
which are found to agree with experiment. This implies that --independently of
which of these quantities is used to set the overall scale-- the same results
are obtained within a few percent. At finite temperature we use finer lattices
down to a <= 0.1 fm (N_t=12 and N_t=16 at one point). Our new results confirm
completely our previous findings. We compare the results with those of the
'hotQCD' collaboration.Comment: 19 pages, 8 figures, 3 table