56 research outputs found

    Antibody-Neutralized Reovirus Is Effective in Oncolytic Virotherapy

    Get PDF
    Immunotherapy is showing promise for otherwise incurable cancers. Oncolytic viruses (OVs), developed as direct cytotoxic agents, mediate their antitumor effects via activation of the immune system. However, OVs also stimulate antiviral immune responses, including the induction of OV-neutralizing antibodies. Current dogma suggests that the presence of preexisting antiviral neutralizing antibodies in patients, or their development during viral therapy, is a barrier to systemic OV delivery, rendering repeat systemic treatments ineffective. However, we have found that human monocytes loaded with preformed reovirus–antibody complexes, in which the reovirus is fully neutralized, deliver functional replicative reovirus to tumor cells, resulting in tumor cell infection and lysis. This delivery mechanism is mediated, at least in part, by antibody receptors (in particular FcγRIII) that mediate uptake and internalization of the reovirus/antibody complexes by the monocytes. This finding has implications for oncolytic virotherapy and for the design of clinical OV treatment strategies

    Pleosporales

    Get PDF
    One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Kriegeriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae

    Delivery of Oncolytic Reovirus by Cell Carriers

    Get PDF
    Oncolytic virus therapy is a rapidly expanding branch of cancer immunotherapy and represents a genuine opportunity to improve currently available treatment options. However, as single agents oncolytic viruses have shown only moderate clinical benefit and many challenges remain before their full potential is realized. Central to this is the efficient delivery of the virus to the tumor site and potentiation of the antitumor immune response. This chapter describes the loading of oncolytic reovirus onto monocytes which act as carriers for delivery of the virus to the tumor site and, as antigen presenting cells, may also thereby potentiate the development of an adaptive antitumor immune response

    Ευρετικές προσεγγίσεις του μοναδιάστατου προβλήματος πακετοποίησης

    Get PDF
    Article 59.1, of the International Code of Nomenclature for Algae, Fungi, and Plants (ICN; Melbourne Code), which addresses the nomenclature of pleomorphic fungi, became effective from 30 July 2011. Since that date, each fungal species can have one nomenclaturally correct name in a particular classification. All other previously used names for this species will be considered as synonyms. The older generic epithet takes priority over the younger name. Any widely used younger names proposed for use, must comply with Art. 57.2 and their usage should be approved by the Nomenclature Committee for Fungi (NCF). In this paper, we list all genera currently accepted by us in Dothideomycetes (belonging to 23 orders and 110 families), including pleomorphic and non-pleomorphic genera. In the case of pleomorphic genera, we follow the rulings of the current ICN and propose single generic names for future usage. The taxonomic placements of 1261 genera are listed as an outline. Protected names and suppressed names for 34 pleomorphic genera are listed separately. Notes and justifications are provided for possible proposed names after the list of genera. Notes are also provided on recent advances in our understanding of asexual and sexual morph linkages in Dothideomycetes. A phylogenetic tree based on four gene analyses supported 23 orders and 75 families, while 35 families still lack molecular data

    Phacidium and Ceuthospora (Phacidiaceae) are congeneric: taxonomic and nomenclatural implications

    Get PDF
    The morphologically diverse genus Ceuthospora has traditionally been linked to Phacidium sexual morphs via association, though molecular or cultural data to confirm this relationship have been lacking. The aim of this study was thus to resolve the relationship of these two genera by generating nucleotide sequence data for three loci, ITS, LSU and RPB2. Based on these results, Ceuthospora is reduced to synonymy under the older generic name Phacidium. Phacidiaceae (currently Helotiales) is suggested to constitute a separate order, Phacidiales (Leotiomycetes), as sister to Helotiales, which is clearly paraphyletic. Phacidiaceae includes Bulgaria, and consequently the family Bulgariaceae becomes a synonym of Phacidiaceae. Several new combinations are introduced in Phacidium, along with two new species, P. pseudophacidioides, which occurs on Ilex and Chamaespartium in Europe, and Phacidium trichophori, which occurs on Trichophorum cespitosum subsp. germanicum in The Netherlands. The generic name Allantophomopsiella is introduced to accommodate A. pseudotsugae, a pathogen of conifers, while Gremmenia is resurrected to accommodate the snow-blight pathogens of conifers, G. abietis, G. infestans, and G. pini-cembrae
    corecore