6,728 research outputs found

    Microwave Components

    Get PDF
    Contains reports on three research projects

    Microwave Components

    Get PDF
    Contains reports on two research projects

    The Role of Relapse Prevention and Goal Setting in Training Transfer Enhancement

    Get PDF
    This article reviews the effect of two post-training transfer interventions (relapse prevention [RP] and goal setting [GS]) on trainees’ ability to apply skills gained in a training context to the workplace. Through a review of post-training transfer interventions literature, the article identifies a number of key issues that remain unresolved or underexplored, for example, the inconsistent results on the impact of RP on transfer of training, the lack of agreement on which GS types are more efficient to improve transfer performance, the lack of clarity about the distinction between RP and GS, and the underlying process through which these two post-training transfer interventions influence transfer of training. We offer some recommendations to overcome these problems and also provide guidance for future research on transfer of training

    Nonlinear dispersion of stationary waves in collisionless plasmas

    Full text link
    A nonlinear dispersion of a general stationary wave in collisionless plasma is obtained in a non-differential form from a single-particle oscillation-center Hamiltonian. For electrostatic oscillations in nonmagnetized plasma, considered as a paradigmatic example, the linear dielectric function is generalized, and the trapped particle contribution to the wave frequency shift Δω\Delta\omega is found analytically as a function of the wave amplitude aa. Smooth distributions yield Δω∼a1/2\Delta\omega\sim a^{1/2}, as usual. However, beam-like distributions of trapped electrons result in different power laws, or even a logarithmic nonlinearity, which are derived as asymptotic limits of the same dispersion relation

    Photometric analysis of a space shuttle water venting

    Get PDF
    Presented here is a preliminary interpretation of a recent experiment conducted on Space Shuttle Discovery (Mission STS 29) in which a stream of liquid supply water was vented into space at twilight. The data consist of video images of the sunlight-scattering water/ice particle cloud that formed, taken by visible light-sensitive intensified cameras both onboard the spacecraft and at the AMOS ground station near the trajectory's nadir. This experiment was undertaken to study the phenomenology of water columns injected into the low-Earth orbital environment, and to provide information about the lifetime of ice particles that may recontact Space Shuttle orbits later. The findings about the composition of the cloud have relevance to ionospheric plasma depletion experiments and to the dynamics of the interaction of orbiting spacecraft with the environment

    Deriving Telescope Mueller Matrices Using Daytime Sky Polarization Observations

    Full text link
    Telescopes often modify the input polarization of a source so that the measured circular or linear output state of the optical signal can be signficantly different from the input. This mixing, or polarization "cross-talk", is defined by the optical system Mueller matrix. We describe here an efficient method for recovering the input polarization state of the light and the full 4 x 4 Mueller matrix of the telescope with an accuracy of a few percent without external masks or telescope hardware modification. Observations of the bright, highly polarized daytime sky using the Haleakala 3.7m AEOS telescope and a coude spectropolarimeter demonstrate the technique.Comment: Accepted for publication in PAS
    • …
    corecore