3 research outputs found
Recommended from our members
Management of groundwater corrective actions at the Savannah River Site
The Savannah River Site, SRS, has experienced groundwater contamination as a result of past operating practices. Clean-up of these groundwaters has the potential to become a very large effort requiring a significant commitment of resources. However, the contaminated groundwaters identified do not present an imminent risk to the offsite population or to onsite workers. In order to ensure a risk-based, cost-effective approach to these actions, a program plan has been developed for the management of contaminated groundwaters at the SRS. This paper will describe the strategy for contaminated groundwater management resulting from the SRS groundwater program plan. Initial corrective actions at SRS have been driven by regulatory requirements under the Resource Conservation and Recovery Act, RCRA. A major groundwater corrective action has been conducted at one waste site at the SRS since 1985. Other potentially major corrective actions at the SRS have been identified. The contaminants of concern include organic solvents, radionuclides, and heavy metals, and their removal presents significant technical challenges. The strategy proposes to: evaluate the regulatory requirements, the long-term risks of the various contaminated groundwater units, the technical requirements associated with clean-up, and the availability of resources; and prioritize future corrective actions while meeting existing commitments to action
Recommended from our members
Application of inorganic-contaminated groundwater to surface soils and compliance with toxicity characteristic (TCLP) regulations
The Westinghouse Savannah River Company (WSRC) is currently implementing a Purged Water Management Program (PWMP) at the Savannah River Site (SRS) near Aiken, South Carolina. A variety of constituents and disposal strategies are being considered. Constituents investigated in the PWMP include radionuclides, organics, and inorganics (As, Ba, Cd, Cr, Pb, Hg, Se, and Ag). One practical disposal alternative is to discharge purged water (all constituents below regulatory levels) to the ground surface near the monitoring well that is being purged. The purpose of this investigation is to determine if long-term application of purged water that contains inorganic constituents (below regulatory levels) to surface soils will result in the accumulation of inorganics such that the soil becomes a hazardous waste according to the Toxicity Characteristic regulations (40 CFR Part 261.24). Two study soils were selected that encompass the range of soils found at the SRS: Lakeland and Orangeburg. Laboratory batch equilibrium studies indicate that the soils, although able to retain a large amount of inorganics, will not exceed Toxicity Characteristic concentrations when subjected to the TCLP. Field studies are underway to confirm this
Review of particle physics
This biennial Review summarizes much of particle physics. Using data from previous editions, plus 2778 new measurements from 645 papers, we list, evaluate, and average measured properties of gauge bosons, leptons, quarks, mesons, and baryons. We also summarize searches for hypothetical particles such as Higgs bosons, heavy neutrinos, and supersymmetric particles. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as the Standard Model, particle detectors, probability, and statistics. Among the 108 reviews are many that are new or heavily revised including those on CKM quark-mixing matrix, Vud & Vus, Vcb & Vub, top quark, muon anomalous magnetic moment, extra dimensions, particle detectors, cosmic background radiation, dark matter, cosmological parameters, and big bang cosmology