384 research outputs found

    Semimicroscopical description of the simplest photonuclear reactions accompanied by excitation of the giant dipole resonance in medium-heavy mass nuclei

    Full text link
    A semimicroscopical approach is applied to describe photoabsorption and partial photonucleon reactions accompanied by the excitation of the giant dipole resonance (GDR). The approach is based on the continuum-RPA (CRPA) with a phenomenological description for the spreading effect. The phenomenological isoscalar part of the nuclear mean field, momentum-independent Landau-Migdal particle-hole interaction, and separable momentum-dependent forces are used as input quantities for the CRPA calculations. The experimental photoabsorption and partial (n,γ)(n,\gamma)-reaction cross sections in the vicinity of the GDR are satisfactorily described for 89^{89}Y, 140^{140}Ce and 208^{208}Pb target nuclei. The total direct-neutron-decay branching ratio for the GDR in 48^{48}Ca and 208^{208}Pb is also evaluated.Comment: 19 pages, 5 eps figure

    Energy Distribution of a Stationary Beam of Light

    Full text link
    Aguirregabiria et al showed that Einstein, Landau and Lifshitz, Papapetrou, and Weinberg energy-momentum complexes coincide for all Kerr-Schild metric. Bringely used their general expression of the Kerr-Schild class and found energy and momentum densities for the Bonnor metric. We obtain these results without using Aguirregabiria et al results and verify that Bringley's results are correct. This also supports Aguirregabiria et al results as well as Cooperstock hypothesis. Further, we obtain the energy distribution of the space-time under consideration.Comment: Latex, no figures [Admin note: substantial overlap with gr-qc/9910015 and hep-th/0308070

    Angular momentum and an invariant quasilocal energy in general relativity

    Full text link
    Owing to its transformation property under local boosts, the Brown-York quasilocal energy surface density is the analogue of E in the special relativity formula: E^2-p^2=m^2. In this paper I will motivate the general relativistic version of this formula, and thereby arrive at a geometrically natural definition of an `invariant quasilocal energy', or IQE. In analogy with the invariant mass m, the IQE is invariant under local boosts of the set of observers on a given two-surface S in spacetime. A reference energy subtraction procedure is required, but in contrast to the Brown-York procedure, S is isometrically embedded into a four-dimensional reference spacetime. This virtually eliminates the embeddability problem inherent in the use of a three-dimensional reference space, but introduces a new one: such embeddings are not unique, leading to an ambiguity in the reference IQE. However, in this codimension-two setting there are two curvatures associated with S: the curvatures of its tangent and normal bundles. Taking advantage of this fact, I will suggest a possible way to resolve the embedding ambiguity, which at the same time will be seen to incorporate angular momentum into the energy at the quasilocal level. I will analyze the IQE in the following cases: both the spatial and future null infinity limits of a large sphere in asymptotically flat spacetimes; a small sphere shrinking toward a point along either spatial or null directions; and finally, in asymptotically anti-de Sitter spacetimes. The last case reveals a striking similarity between the reference IQE and a certain counterterm energy recently proposed in the context of the conjectured AdS/CFT correspondence.Comment: 54 pages LaTeX, no figures, includes brief summary of results, submitted to Physical Review

    Pseudotensors and quasilocal energy-momentum

    Get PDF
    Early energy-momentum investigations for gravitating systems gave reference frame dependent pseudotensors; later the quasilocal idea was developed. Quasilocal energy-momentum can be determined by the Hamiltonian boundary term, which also identifies the variables to be held fixed on the boundary. We show that a pseudotensor corresponds to a Hamiltonian boundary term. Hence they are quasilocal and acceptable; each is the energy-momentum density for a definite physical situation with certain boundary conditions. These conditions are identified for well-known pseudotensors.Comment: LaTeX (REVTex), 4 pages, no figures, revised Title, abstract, introduction and conclusio

    Naked singularities and Seifert's conjecture

    Get PDF
    It is shown that for a general nonstatic spherically symmetric metric of the Kerr-Schild class several energy-momentum complexes give the same energy distribution as in the Penrose prescription, obtained by Tod. This result is useful for investigating the Seifert conjecture for naked singularities. The naked singularity forming in the Vaidya null dust collapse supports the Seifert conjecture. Further, an example and a counterexample to this conjecture are presented in the Einstein massless scalar theory.Comment: RevTex, no figures, new results included, published in Physical Review D 60, 104041 (1999

    On Global Conservation Laws at Null Infinity

    Get PDF
    The ``standard'' expressions for total energy, linear momentum and also angular momentum of asymptotically flat Bondi metrics at null infinity are also obtained from differential conservation laws on asymptotically flat backgrounds, derived from a quadratic Lagrangian density by methods currently used in classical field theory. It is thus a matter of taste and commodity to use or not to use a reference spacetime in defining these globally conserved quantities. Backgrounds lead to N\oe ther conserved currents; the use of backgrounds is in line with classical views on conservation laws. Moreover, the conserved quantities are in principle explicitly related to the sources of gravity through Einstein's equations, while standard definitions are not. The relations depend, however, on a rule for mapping spacetimes on backgrounds

    Aneurysms—from traumatology to screening

    Get PDF
    This paper deals with aneurysmal disease, primarily when localized in the abdominal aorta. It is based on the Olof Rudbeck lecture 2009. Aneurysm is a localized widening of an artery, and its definition has become an important issue today when the disease is in focus for screening programmes. Aetiology and pathogenesis are still poorly understood, but a genetic component determining the strength of the aortic wall is important, and there is a strong male dominance. Historically, several attempts have been made to treat the disease, but reconstructive treatment has been possible only since 1951, in an increasing number of cases performed endovascularly. By early detection through screening, and thereby the possibility to treat before rupture, it has now become possible to decrease the total mortality from the disease in the population

    Evidence of strong stabilizing effects on the evolution of boreoeutherian (Mammalia) dental proportions.

    Get PDF
    The dentition is an extremely important organ in mammals with variation in timing and sequence of eruption, crown morphology, and tooth size enabling a range of behavioral, dietary, and functional adaptations across the class. Within this suite of variable mammalian dental phenotypes, relative sizes of teeth reflect variation in the underlying genetic and developmental mechanisms. Two ratios of postcanine tooth lengths capture the relative size of premolars to molars (premolar-molar module, PMM), and among the three molars (molar module component, MMC), and are known to be heritable, independent of body size, and to vary significantly across primates. Here, we explore how these dental traits vary across mammals more broadly, focusing on terrestrial taxa in the clade of Boreoeutheria (Euarchontoglires and Laurasiatheria). We measured the postcanine teeth of N = 1,523 boreoeutherian mammals spanning six orders, 14 families, 36 genera, and 49 species to test hypotheses about associations between dental proportions and phylogenetic relatedness, diet, and life history in mammals. Boreoeutherian postcanine dental proportions sampled in this study carry conserved phylogenetic signal and are not associated with variation in diet. The incorporation of paleontological data provides further evidence that dental proportions may be slower to change than is dietary specialization. These results have implications for our understanding of dental variation and dietary adaptation in mammals

    Quasi-Local Gravitational Energy

    Full text link
    A dynamically preferred quasi-local definition of gravitational energy is given in terms of the Hamiltonian of a `2+2' formulation of general relativity. The energy is well-defined for any compact orientable spatial 2-surface, and depends on the fundamental forms only. The energy is zero for any surface in flat spacetime, and reduces to the Hawking mass in the absence of shear and twist. For asymptotically flat spacetimes, the energy tends to the Bondi mass at null infinity and the \ADM mass at spatial infinity, taking the limit along a foliation parametrised by area radius. The energy is calculated for the Schwarzschild, Reissner-Nordstr\"om and Robertson-Walker solutions, and for plane waves and colliding plane waves. Energy inequalities are discussed, and for static black holes the irreducible mass is obtained on the horizon. Criteria for an adequate definition of quasi-local energy are discussed.Comment: 16 page
    corecore