1,539 research outputs found

    Low toxicity radiation sensitizer

    Get PDF
    This invention relates to cisplatin type fluorescently labeled compounds. In particular, the compounds are bis (5-aminofluorescein)-dichloroplatinum (II) or certain substituted analogues thereof. The compounds are useful as radiation sensitivity enhancers and as fluorescent biological tracers. The invention also relates to a unique, single step synthesis for preparing said compounds

    Low toxicity radiation sensitizer

    Get PDF
    Bis(5-aminofluorescein)dichloroplatinum(II), and substituted fluoresceinamine derivatives of this compound are disclosed as highly effective radiation sensitizers which enhance the effect of ionizing radiation on tumor cells, but uniquely do so without the usual accompanying high toxicity level to surrounding normal cells. A direct combination, single step reaction synthesis is disclosed for preparing bis(5-aminofluorescein)dichloroplatinum(II) from the reaction between an alkali metal tetrachloroplatinate(II) and 5-aminofluorescein

    Frequency and time standards based on stored ions

    Get PDF
    The method of ion storage provides a basis for excellent time and frequency standards. This is due to the ability to confine ions for long periods of time without the usual perturbations associated with confinement (e.g., wall shifts). In addition, Doppler effects can be greatly suppressed. The use of stored ions for microwave frequency standards and the future possibilities for an optical frequency standard based on stored ions are addressed

    Direct excitation of the forbidden clock transition in neutral 174Yb atoms confined to an optical lattice

    Full text link
    We report direct single-laser excitation of the strictly forbidden (6s^2)^1S_0 -(6s6p)^3P_0 clock transition in the even 174Yb isotope confined to a 1D optical lattice. A small (~1.2 mT) static magnetic field was used to induce a nonzero electric dipole transition probability between the clock states at 578.42 nm. Narrow resonance linewidths of 20 Hz (FHWM) with high contrast were observed, demonstrating a record neutral-atom resonance quality factor of 2.6x10^13. The previously unknown ac Stark shift-canceling (magic) wavelength was determined to be 759.35+/-0.02 nm. This method for using the metrologically superior even isotope can be easily implemented in current Yb and Sr lattice clocks, and can create new clock possibilities in other alkaline earth-like atoms such as Mg and Ca.Comment: Submitted to Physics Review Letter

    Patterns of Coastal Land Cover and Estuarine Habitat Quality: Application of Long-term Monitoring Data

    Get PDF
    2008 S.C. Water Resources Conference - Addressing Water Challenges Facing the State and Regio

    Sub-dekahertz ultraviolet spectroscopy of 199Hg+

    Full text link
    Using a laser that is frequency-locked to a Fabry-Perot etalon of high finesse and stability, we probe the 5d10 6s 2S_1/2 (F=0) - 5d9 6s 2D_5/2 (F=2) Delta-m_F = 0 electric-quadrupole transition of a single laser-cooled 199Hg+ ion stored in a cryogenic radio-frequency ion trap. We observe Fourier-transform limited linewidths as narrow as 6.7 Hz at 282 nm (1.06 X 10^15 Hz), yielding a line Q = 1.6 X 10^14. We perform a preliminary measurement of the 5d9 6s2 2D_5/2 electric-quadrupole shift due to interaction with the static fields of the trap, and discuss the implications for future trapped-ion optical frequency standards.Comment: 4 pages, 4 figures, submitted for publicatio

    Coherent optical phase transfer over a 32-km fiber with 1-s instability at 10−1710^{-17}

    Full text link
    The phase coherence of an ultrastable optical frequency reference is fully maintained over actively stabilized fiber networks of lengths exceeding 30 km. For a 7-km link installed in an urban environment, the transfer instability is 6×10−186 \times 10^{-18} at 1-s. The excess phase noise of 0.15 rad, integrated from 8 mHz to 25 MHz, yields a total timing jitter of 0.085 fs. A 32-km link achieves similar performance. Using frequency combs at each end of the coherent-transfer fiber link, a heterodyne beat between two independent ultrastable lasers, separated by 3.5 km and 163 THz, achieves a 1-Hz linewidth.Comment: 4 pages, 4 figure

    Laser frequency stabilization to a single ion

    Full text link
    A fundamental limit to the stability of a single-ion optical frequency standard is set by quantum noise in the measurement of the internal state of the ion. We discuss how the interrogation sequence and the processing of the atomic resonance signal can be optimized in order to obtain the highest possible stability under realistic experimental conditions. A servo algorithm is presented that stabilizes a laser frequency to the single-ion signal and that eliminates errors due to laser frequency drift. Numerical simulations of the servo characteristics are compared to experimental data from a frequency comparison of two single-ion standards based on a transition at 688 THz in 171Yb+. Experimentally, an instability sigma_y(100 s)=9*10^{-16} is obtained in the frequency difference between both standards.Comment: 15 pages, 5 figures, submitted to J. Phys.
    • …
    corecore